Methane emissions from beef cattle bred for low residual feed intake Project number : 2014R073R

Principal Investigator: John A. Basarab, Alberta Agriculture and Forestry, Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, AB, Canada T4L 1W1 Phone: 403 350-9620 email: john.basarab@gov.ab.ca

ERA/CCEMC advisor and contact: Carol Bettac, Susan Wood-Bohm & Laurie Vaughan-Evans AF/ALMA advisor and contact: Jeff Millang and Susan Novak

Project completion date: 31 December 2017

Total ERA funds received and amount of hold back:

Submission date: 31 March 2018

Research team members (List names of all team members)								
Name	Institution	Expertise added						
Dr. Vern Baron	Agriculture and Agri-Food	Forage Physiology						
	Canada							
Dr. Thomas Flesch	Department of Earth &	Micrometeorology						
	Atmospheric Science,							
	University of Alberta							
Dr. John Wilson	Department of Earth &	Micrometeorology						
	Atmospheric Science,							
	University of Alberta							
Dr. Karen Beauchemin	Agriculture and Agri Food	Ruminant Nutrition and Methane						
	Canada, Lethbridge Research	Emissions						
	Centre							
Dr. Kimberly Ominski	Department of Animal	Ruminant Nutrition and Cattle						
	Science,	Management						
	University of Manitoba							
Camiel Huisma	GrowSafe Systems Ltd.,	Co-CEO						
	Calgary, AB, Canada							
Dr. Ghader Manafiazar	Livestock Gentec/AFNS,	Quantitative Genetics/Genomics						
	University of Alberta	and Cattle Management						
Dr. Graham Plastow	Livestock Gentec/Agricultural,	Quantitative Genetics and						
	Food and Nutritional Sciences,	Genomics						
	University of Alberta							

Note: Graham Plastow replaced Erasmus Okine who took on the position of Vice President of Research at University of Lethbridge, effective July 2015.

1.1. Table of Contents

1.2 List of Tables	3
1.3 List of Figures	4
2.0 Executive Summary	5
3.0. Introduction and Project Overview	8
3.1. Project goals	10
3.2. Results and Discussion	10 10 11
<u>Objective 3.1.3:</u> Methane emissions from cattle grazing under diverse conditions: An examination of field configurations appropriate for line-averaging sensors Objective 3.1.4: Methane measurements from high (inefficient) vs. low (efficient)	11
residual feed intake (RFI) heifers using open-path lasers (e.g., FTIR) Objective 3.1.5: Methane measurements from low (efficient) and high (inefficient)	12
residual feed intake (RFI) heifers using the GEM system Objective 3.1.6: Quantification of the relationships between various daily measured biometrics and daily forage intake and methane emissions from pregnant heifers	15
grazing summer pasture and cows grazing swathed annuals (triticale) <u>Objective 3.1.7</u> : Quantify relationships of CH_4 and CO_2 emissions with feed intake,	21
RFI and various biometrics in neiters and cows during winter drylot feeding	24
4.0 Scientific Achievement	28
4.1. Potential patents, licence agreements	28
4.2. Published peer-reviewed papers, abstracts and proceedings	28
4.3. Presentations, workshops, newsletters, articles, videos	28
4.4. Students involved and level	31
4.5. Greenhouse Gas Impact	32
5.0. Conclusion	32
6.0. Project Budget	33
7.0. Funding contributions	35
Appendix A. CCEMC Budget, March 2014 to 31 December 2017	37

1.2. List of Tables

Table 1. Methane (CH ₄) emission, feed intake and CH ₄ yield from high and low RFI beef heifers grazing summer pasture at the Lacombe Research and Development Centre, 2015-2017
Table 2. Methane (CH ₄) emission, feed intake and CH ₄ yield from high and low RFI 3-yr old beef cows grazing triticale swaths in the fall (October) at the Lacombe Research and Development Centre 14
Table 3. Performance, feed intake and methane and carbon dioxide production of yearling heifers, cowsand pregnant heifers summarized over 21 trials19
Table 4. Descriptive statistics on number of manual scale whole body and high frequency partial bodyweights taken during eight grazing trails conducted at Lacombe Research and Development Centre21
Table 5. Correlation coefficients between various biometrics measured daily using remote sensorssupplemented with daily climatic and forage quality data, and daily forage intake and methaneemissions from pregnant heifers grazing summer pasture23
Table 6. Linear effects between various biometrics measured daily using remote sensors supplementedwith daily climatic observations and diet quality information, and average animal forage intake andmethane emissions from pregnant heifers grazing meadow brome grass24
Table 7. Correlation coefficients between various biometrics measured daily using remote sensorssupplemented with climatic observations and diet quality information and daily feed intake andmethane emissions from beef heifers and cows during winter drylot feeding (15 trials)
Table 8. Linear effects between various biometrics measured daily using remote sensors supplementedwith daily climatic observations and diet quality information, and average animal feed intake andmethane emissions from heifers and cows during winter drylot feeding26

1.3. List of Figures

Figure 1. Daily CH ₄ emission patterns for heifers from Kinsella and Lacombe grazed at the Lacombe Research and Development Centre. This is a composite of all three years of summer grazing data, combining the high and low RFI animals
Figure 2. Diurnal distribution of enteric methane and carbon dioxide emissions from replacement beef heifers fed a high forage diet in drylot as measured by the GEM system 16
Figure 3. Diurnal distribution of enteric methane and carbon dioxide emissions from pregnant beef heifers grazing high quality meadow brome grass as measured by the GEM system
Figure 4. Diurnal distribution of enteric methane and carbon dioxide emissions from cows fed a forage diet in winter drylot as measured by the GEM system 17
Figure 5. Diurnal distribution of enteric methane and carbon dioxide emissions from cows grazing triticale swaths during the fall as measured by the GEM system
Figure 6. Forage intake of high and low RFI _{fat} pregnant heifers grazing meadow brome grass over three summers at LRDC (summary of 6 trials and 60 heifers from LRDC and 60 from KIN)
Figure 7. Relationship between body weight recorded by a manual scale vs. high frequency partial body weight recorded by the GrowSafe Beef System during 8 grazing trials from 2015-2017 22
Figure 8. Relationship between trial average feed intake and trial average carbon dioxide emissions in beef heifers and cows over 20 trials conducted at the Lacombe Research and Development Centre and the Roy Berg Kinsella Research Station
Figure 9. Relationship between trial average methane emission and trial average feed intake in beef heifers and cows in 20 trials conducted at the Lacombe Research and Development Centre and the Roy Berg Kinsella Research Station

Abbreviations: GHG = greenhouse gas; **RFI**_{fat} = residual feed intake adjusted for off-test backfat; **DMI** = dry matter intake; **CH**₄ = methane; **CO**₂ = carbon dioxide; **LRDC** = Lacombe Research and Development Centre; **KIN** = Roy Berg Kinsella Research Station; **GEM** = Greenfeed Emissions Monitoring; **FTIR** = Fourier Transform Infrared Spectrophotometer.

2.0. Executive Summary

• The project

- Alberta is among the largest beef producing region in North America, having 42% of the beef cows and bred heifers and 70% of the beef feeding capacity in Canada.
- Alberta produces 32% of Canada's agricultural greenhouse gas (GHG) emissions and is ranked first among provinces (Environment Canada, 2016). About 20% of the methane emissions in Alberta are from enteric methane, and 75% of this methane originates from cow-calf operations.
- Since cattle are vital to the grassland ecosystem, rural community growth, and a safe and secure food supply, it is imperative to find solutions to reduce methane and GHG emissions from the beef cow-calf herds in Alberta.

• Objectives were to;

i) assess the GreenFeed Emissions Monitoring (GEM) system and open-path concentration sensors (e.g., Fourier-transform infrared spectroscopy, FTIR) for their ability to accurately measure enteric methane (CH₄) emissions under on farm grazing and wintering conditions;

ii) compare feed intake, CH₄ and carbon dioxide (CO₂) emissions from high and low RFI (residual feed intake) beef heifers and cows under grazing and winter drylot conditions using GEM and respiration chambers;

iii) quantify enteric methane emissions, feed intake, RFI and various biometrics in yearling beef heifers and cows during winter in drylot; and

iv) quantify enteric methane emissions, feed intake, RFI and various biometrics in pregnant yearling beef heifers during summer grazing.

• Results

- The GEM system functioned well in outdoor drylot environments through four Alberta winters where night time temperature often dropped below -30 °C. It was determined that averaging over 7 to 14 d with minimum of 20 spot samples was needed to produce repeatable and reliable averaged CH₄ and CO₂ emissions (Manafiazar et al. 2016, Can. J. Animal. Sci. 97: 118–126).
- The GEM and respiratory chambers were compared at the Lethbridge Research Centre. It was concluded that, when intake of animals is known, GEM offers a robust and accurate means of measuring CH₄ emissions from animals under field conditions (Alemu et al. 2017, J. Anim. Sci., 95(8):3727-3737).
- The FTIR laser combined with inverse-dispersion micrometeorological techniques and using a narrow paddock design and a robotic motor to aim and rotate the FTIR provided a flexible and accurate method for measuring CH₄ emissions from grazing cattle (Flesch et al. 2017, Agricultural and Forest Meteorology, http://dx.doi.org/10.1016/j.agrformet.2017.10.012).
- Enteric CH₄ emissions from high (inefficient) and low (efficient) RFI_{fat} pregnant heifers were measured using FTIR in six summer grazing trials. In five of six trials, low RFI_{fat} heifers emitted 4-13% less methane per day as compared with their high RFI_{fat} pasture mates. In addition in two fall swath grazing trials, low RFI_{fat} cows emitted 6-9% less methane per day than high RFI_{fat} cows. Low RFI_{fat} heifers and cows consumed 7.0% and 5.2%, respectively, less forage DM/day as compared with their high RFI_{fat} cohorts, and had similar methane yields (g/kg DMI).

- Enteric CH₄ and CO₂ emissions from high and low RFI_{fat} heifers and cows were measured in 13 trials using the GEM system. Low RFI_{fat} cattle emitted 1.9% to 9.7% less methane per day compared with high RFI_{fat} cattle in 7 of 8 trials where forage diets (barley or triticale silage) were fed and five of five grazing trials. Low RFI_{fat} cattle also emitted 0.6% to 5.1% less CO₂ per day compared with high RFI_{fat} cattle in 7 of 8 drylot trials and 5 of 5 grazing trials. These results are due to lower feed intake, lower CO₂ from feed fermentation and higher metabolic efficiency in low compared with high RFI_{fat} cattle.
- Remote sensors (GEM, GrowSafe feed intake and GrowSafe Beef[®] systems) were used to monitor daily animal partial body weight, water intake, drinking behaviour, feed intake, and feeding behaviours. These data were combined with climatic observations and diet quality information. GrowSafe Beef[®] measures partial body weights many times during the day (high frequency, HF) when the animal is consuming water. These partial body weights are then converted to whole body weight. The GrowSafe feed intake system measures individual animal feed intake and feeding behaviours in a drylot, group setting.
- Whole body weight, as measured by a manual weigh scale, was highly related to HF body weight as measured by GrowSafe Beef[®], such that HF body weight accounted for 95% of the variation in manual scale body weight for pregnant heifers and 3-year old cows. A similar strong (R² = 0.971) linear relationship was observed between manual scale body weight and GrowSafe Beef[®] HF body weight for yearling heifers and mature cows in drylot during their winter feed intake test. An advantage of HF partial body weight is that a weighing episode could occur 3-4 times per day in a non-stressed environment, while manual weights are associated with moving animal to a central processing area several times during a grazing period, usually in the morning. We conclude that HF partial body weight, as measured by GrowSafe Beef[®], has great potential as a non-invasive, low stress, low labor method for measuring daily body weight under grazing and drylot conditions and may also be an indirect indicator of other important traits in beef cattle.
- GrowSafe Beef[®] biometrics such as daily HF partial body weight, water intake, and drinking and feeding behaviours combined with climatic observations and forage quality data (25 variables) had moderate (R² = 0.45-0.46) predictive accuracy for daily grazed forage intake and CH₄ emissions from individual animals on pasture. In addition, daily HF partial body weight combined with other climatic observations and diet quality data had strong relationships (R² = 0.885 and 0.823) to animal average daily feed intake and CH₄ emissions under drylot feeding conditions.
- Genetic selection for low RFI_{fat} will result in cattle with lower feed intake at the same level of production, and reduced daily CH₄ and CO₂ emissions compared with high RFI_{fat} cattle. Selection emphasis should be placed on production efficiency traits rather than CH₄ emissions per se as combining nutritional intervention, management, breeding strategies (e.g., maintain high herd heterosis) and genetic/genomic selection are more effective in reducing enteric methane emissions and carbon footprint (30-50% reduction).

Project Outcomes

 This project quantified the mitigation potential of low-RFI cattle under conditions representative of the Alberta beef herd. In terms of the volume of measurements, the conditions in which the measurements were made, the number of techniques used, and the scientific standards that were applied, this was a world-class effort.

- The GEM system and the FTIR laser technique for measuring CH₄ and CO₂ emissions from cattle were evaluated. This resulted in the development of cutting edge FTIR methodology and rigorous scientific protocols for the GEM system. These are two less invasive, less expensive, less labor intensive and accurate methods for measuring CH₄ emission from beef cattle under on-farm conditions compared with respiratory chambers and FS₆ tracer methodology.
- A world-class team was assembled that has the expertise and techniques to measure the GHG footprint of beef cattle production. This team includes two newly trained Masters of Science students and three post-doctorate fellows, which will help to advance Alberta's leadership role in GHG mitigation.
- This project team also trained scientists from the University of Alberta that are using the GEM system to measure methane emissions in dairy cattle as part of Genome Canada's Large Scale Applied Research Program on RFI and methane emissions in dairy cattle (PI, Filippo Miglior).
- Five peer reviewed papers have already been published in the Canadian Journal of Animal Science (1), American Journal of Animal Science (1), and Agricultural and Forest Meteorology (3). Two more manuscripts are in preparation.
- Forty presentations were made by team members at conferences (17), universities to undergraduate students (6), and to industry at field day and workshops (17). In addition four YouTube videos were produced, along with two newsletter articles, seven radio interviews (e.g., Canadian Geographic, CBC radio, CBC TV) and two presentations at the Five Country Fall Forum on Climate Change, and Sustainability as related to plants and livestock genomics (CAN, NZ, USA, Ireland, Northern Ireland).
- The team was acknowledged at the Alberta Legislative Assembly; 23 November 2016, Members' Statement as <u>reported by Alberta Hansard</u>. Dr. David Bailey and Dr. John Basarab introduced at Alberta's Legislative Assembly by "The hon. Member for Leduc-Beaumont. Mr. S. Anderson, as related to genomics and GHG emissions in beef cattle.
- The Beef Cattle Methane Emissions data base is operational and contains more than 23,000 individual animal daily enteric CH₄ and CO₂ emissions, with daily feed intake and feeding behaviours, HF partial body weight, water intake and drinking behaviours, climatic observations and diet quality information. All cattle (~700) in this data base have 50K or LD genotypes which are being used to identify SNPs, indels (genetic mutation; insertions and deletions) and functional genomic variants associated with CH₄ emissions and yield.
- Results provide validation for the carbon footprint of a feed efficient beef herd simulated with HOLOS by Beauchemin, Little and Basarab (2013). The simulation assumed a comprehensive genetic selection program, an annual rate of genetic progress in RFI of 0.8%, a multi-trait selection index approach and 25 year of selection. After full selection of a beef cattle herd for RFI, the estimated GHG intensity from beef production were 14.0% lower than for the non-selected baseline herd. Due to the lower feed intake of the RFI herd, the farm area required for grazing and feed production was 13.2% lower than for the baseline herd.

3.0. Introduction and Project Overview

Alberta is among the largest beef producing region in North America, containing 42% of the beef cows and bred heifers and 70% of the beef feeding capacity in Canada (Canfax Research Services, September 2015). In addition, Alberta is the only jurisdiction in North America that has an active carbon trading registry (Alberta Carbon Offset program, July 2007, <u>http://aep.alberta.ca/climate-change/programs-andservices/alberta-carbon-offset-system.aspx</u>). Three protocols for reducing GHG emissions from beef cattle production have been registered with Alberta Environment, namely; 1) reducing days on feed of beef cattle, 2) reducing age at harvest of beef cattle, and 3) selection for low residual feed intake (RFI) in beef cattle. It has been estimated that reducing age at harvest in Alberta's 2.4 million feeder cattle by one month would reduce GHG emissions by 681,000 t CO2e annually (Basarab et al. 2008). Similarly, in a simulation study using the HOLOS whole farm model, Basarab et al. (2013) reported that after 25 years of selection for low RFI, GHG emissions were 0.844 t CO₂e/cow/year lower compared with the average herd, or 1.64 Mt CO₂e/year lower for Alberta's 1.945 million beef cows and bred heifers and 3.89 Mt CO₂e/year lower for Canada's 4.613 million beef cows and bred heifers. However, these model estimates are not based on rigorous emission measurements in real-world conditions. Thus the mitigation potential of low RFI herds – which looks very promising – is not actually known.

The measurement of gas emissions to the atmosphere is a difficult challenge. It is an even greater challenge in the case of livestock emissions, where animals are typically handled in a restrictive measurement environment (e.g., large chambers) or subjected to atypical management during measurement. Such "unnatural" situations alter the feeding behavior of the animals and change their emissions. To further complicate the problem, cattle emissions are not uniform over time. Because emission rates vary within and between days and seasons, measurements should simultaneously be made with high temporal resolution and over long time periods. Can cattle emissions be measured from real-world production settings, and over long enough periods to confidently understand the implications of any mitigation strategy?

Respiratory chambers are often referred to as the "gold standard" for emission measurements, with individual animals studied for 1-3 days. However, inside the chamber the animal's feed intake is reduced, feeding behaviours are altered and short-term CH_4 measurement is unlikely to reflect longer-term CH_4 emissions in real production systems (Hegarty, 2004; Harper et al., 2011). The Sulphur hexafluoride (SF6) tracer technique can be used under practical conditions but requires rumen boluses, docile animals, daily animal handling, and laboratory gas analyses and is labor intensive. The GreenFeedTM system (https://www.c-lockinc.com/ ; C-Lock Inc., Rapid City, SD, USA) is an automated, individual animal feeding or "bait" station (e.g., feed pellets) that measures carbon dioxide (CO_2 ; useful in estimating energy balance or efficiency) and CH_4 over 3-5 minutes, 4-5 times per day over many days. Preliminary results have reported similar CH_4 emissions (within 1-10%) from cattle as measured by respiratory chambers, GreenFeedTM and SF₆ techniques (Hammond et al. 2013; Waghorn et al. 2011). While these standard measurement techniques have advantages either in terms of simplicity or cost, historical track record and precision may be limited by animal interference, unproven accuracy, or difficulty in making multi-day measurements.

As an alternative, micrometeorological techniques offer the potential for measuring cattle emissions in real world conditions without animal handling or altering animal behavior (Harper et al, 2011). While most of these techniques are either inappropriate or difficult to adapt to the grazing environment, technological developments in the last decade have advanced a new and powerful micrometeorological technique for studying animal emissions. Open-path gas sensors coupled with inverse dispersion calculations allow the measurement of emissions with much fewer restrictions than other techniques. With an open-path sensor one measures the "fence-line" concentration in the air between the sensor

and a distant reflector (e.g., 50 to 1000 m apart). Lasers and Fourier Transform Infrared Spectrophotometers are two types of open-path sensors (OP-Laser & OP-FTIR). With two fence-line measurements one can isolate a paddock and study emissions in real-world beef production settings, and with high resolution (e.g., 15-min average emission rates throughout the day). Canadian researchers have been active in the adapting open-path technology to study gas emissions from agriculture. In a collaborative project with Vern Baron of Agriculture and Agri-Food Canada (AAFC) and John Basarab with Alberta Agriculture and Forestry (AAF), John Wilson and Thomas Flesch at the University of Alberta have been deploying OP-Laser and OP-FTIR sensors to look at cattle emissions in grazing situations. The OP-Laser is a compact one-gas sensor that is environmentally robust and allows enteric methane measurements in Canadian winter conditions. Alternatively, the OP-FTIR detector has multi-gas capability, making it possible to study a suite of GHGs as well as other pertinent gases such as ammonia. The OP-FTIR also improves on the sensitivity of the laser. However, the OP-FTIR is bulkier than the laser and its winter performance is unproven.

The primary purpose of this study is to measure the CH_4 emissions from beef cattle measured for feed efficiency, specifically residual feed intake (RFI). This effort will rely on application of the new FTIR-laser technology, which will allow us to study emissions in real-world Alberta beef production situations. We will "push the envelope" on this technique towards smaller number of animals. In the past the technique has been used with groups of 10 or more animals. If we can push this down to 5-6 animals, we can focus on the extremes of RFI animals and better judge the bounds of possible CH_4 reduction due to low RFI selection.

This leads to a second objective of this project: determining the reliability of alternative CH₄ measurement techniques. Do we need the precision and repeatability of chamber measurements to identify low-emission animals? How about a "sniffer" method like GreenFeed or a biometric method like GrowSafe Beef[®], with their inherent simplicity and ability to monitor individual animals? Our goal will be to identify reliable technologies.

Because even the simplest of direct emission measurement techniques is a substantial undertaking, requiring specialized equipment and expertise, can we instead estimate emissions using simple indirect measurement? A third set of objectives will be to examine the use of indirect biometrics such as feeding and water behaviours and intake in relationship to CH₄ production (g CH₄/animal/day) and yield (g CH₄/kg DMI). This aspect can be measured using GrowSafe Beef[®] (GrowSafe Systems Ltd., Calgary, Alberta, Canada; <u>http://growsafe.com/</u>).

3.1. Project goals

3.1.1. Determine the repeatability of short-term spot measurements of CH_4 and CO_2 emissions from beef cattle using GreenFeed Emissions Monitoring (GEM) system.

3.1.2. Compare CH₄ emissions from high and low RFI beef heifers using GreenFeed and respiration chambers.

3.1.3. Assess open-path concentration sensors (e.g., lasers, FTIR) and inverse-dispersion micrometeorological techniques using different field configurations for measuring methane emissions from grazing and wintering cattle.

3.1.4: Methane measurements from low (efficient) and high (inefficient) residual feed intake (RFI) heifers using Fourier-transform infrared spectroscopy (FTIR, laser).

3.1.5: Methane measurements from low (efficient) and high (inefficient) residual feed intake (RFI) heifers using GreenFeed Emissions Monitoring (GEM) System.

3.1.4. Quantify enteric methane emissions (CH_4), feed intake, RFI and various biometrics in yearling beef heifers and cows during drylot winter feeding (confinement) at the Lacombe Research and Development Centre (LRDC) and the Roy Berg Kinsella Research Station (KIN).

3.1.5: Methane measurements from low (efficient) and high (inefficient) residual feed intake (RFI) heifers using GreenFeed Emissions Monitoring (GEM) System

3.1.6. Quantification of the relationships between various daily measured biometrics and daily forage intake and methane emissions from pregnant heifers grazing summer pasture and cows grazing swathed annuals (triticale).

3.1.7. Quantify relationships of CH_4 and CO_2 emissions with feed intake, RFI and various biometrics in heifers and cows during winter drylot feeding.

3.2. Results and Discussion

Objective 3.1.1: Repeatability and variability of short-term spot measurement of methane and carbon dioxide emissions from beef cattle using GreenFeed emissions monitoring (GEM) system; published in the Can. J. Animal. Sci. 97: 118–126 (Manafiazar et al. 2017).

The purpose of this study was to determine the repeatability of CH_4 and CO_2 emissions from beef cattle using the GEM system and as affected by sampling frequency and measurement periods. Twenty-eight crossbred replacement beef heifers were monitored using the GEM system over 59 d to collect their CH_4 and CO_2 emissions data. Heifers' feed intake was recorded by eight automated feeding stations. The standardized dry matter intake (SDMI), CH_4 and CO_2 emission and yield (g/kg SDMI) were averaged over 1, 3, 7, and 14 d periods. On average, animals emitted 204.7 g/day (SD = 36 g/day) and 6408 g/day (SD = 780 g/day) of CH_4 and CO_2 , respectively. Between-animal coefficients of variation for all variables decreased with an increasing averaging period (from 1 to 14 d). The coefficient of determination (R^2) between CH_4 emission and SDMI was increased from 0.25 to 0.73 as averaging period increased from 1 to 14 d. Similarly, the R^2 between CO_2 emission and SDMI increased from 0.39 to 0.79 as averaging period increased from 1 to 14 d. It was determined that averaging over 7 to 14 d with minimum of 20 spot samples was needed to produce repeatable and reliable averaged CH_4 and CO_2 emissions and correlated with SDMI. In addition, the GEM system functioned in a feedlot environment through an Alberta winter where night time temperatures often dropped below -25 °C.

Objective 3.1.2: Enteric methane emissions from low- and high-residual feed intake beef heifers measured using GreenFeed and respiration chamber techniques; published in J. Anim. Sci., 95(8):3727-3737 (Alemu et al. 2017).

The objectives of this study were to evaluate the relationship between RFI and enteric CH₄ production (g/d; g/kg DM) and to compare CH₄ and CO₂ emissions measured using respiration chambers (RC) and GEM system (C-Lock Inc., Rapid City, USA). Sixteen crossbred replacement heifers (8 low RFI and 8 high RFI) with mean initial BW of 377 ± 30 kg were used to measure enteric CH₄ and CO₂ emissions (g/d). Heifers were group-housed in a pen and fed barley silage *ad libitum* and their feed intakes were recorded by 5 automated GrowSafe feed intake bunks (GrowSafe Systems Ltd., Calgary, AB, Canada). Enteric CH₄ and CO₂ emissions were measured over two 25-d periods using RC (2 days/period) and GEM systems (all days when not in chambers). Metabolic BW tended to be greater ($P \le 0.09$) for high RFI heifers but ADG tended (P = 0.09) to be greater for low RFI heifers. As expected, high RFI heifers consumed 6.9% more feed (P = 0.03) compared to their more efficient counterparts (7.1 vs 6.6 kg

DM/d). Average CH₄ emission was 202 and 222 g/d (P = 0.02) from the GEM system, and 156 and 164 g/d (P = 0.40) in RC for the low and high RFI heifers, respectively. When adjusted for feed intake, CH₄ yield (g/kg DMI) was similar for high and low RFI heifers (GEM: 27.7 and 28.5, P = 0.25; RC: 26.5 and 26.5, P = 0.99). However, CH₄ yield for the high RFI group (P = 0.01) differed for the two measurement techniques, but did not differ for the low RFI cattle (P = 0.13). Estimates of CO₂ yield (g/kg DMI) also differed between the two techniques ($P \le 0.03$). Our study found that high and low efficiency cattle produce similar CH₄ yields but different daily CH₄ emissions. The two measurement techniques differ in estimating CH₄ and CO₂ emissions, partially due to differences in conditions (lower feed intakes of cattle while in chambers, fewer days measured in chambers) during measurement. We conclude that, when intake of animals is known, GEM offers a robust and accurate means of estimating CH₄ emissions from animals under field conditions.

Objective 3.1.3: Methane emissions from cattle grazing under diverse conditions: An examination of field configurations appropriate for line-averaging sensors; published in Agricultural and Forest Meteorology, <u>http://dx.doi.org/10.1016/j.agrformet.2017.10.012</u> (Flesch et al. 2017).

Micrometeorological techniques offer the possibility of a non-interfering measurement of enteric emissions from cattle in their natural environment, where animals do not need to be encumbered or handled. However, the grazing environment is a difficult application for these techniques. This study reports on an experimental design using an inverse dispersion method (IDM) to measure enteric methane (CH_4) emissions, and its application to 15 rather distinct cattle trials in three types of feeding situations: summer grazing, winter swath grazing, and winter feeding. The IDM design was based on long and narrow animal paddocks with line-averaging sensors measuring CH4 concentration alongside the long axes of the paddock. Emissions were calculated based on the difference in concentration between the two measurement paths. The narrow paddock has many advantages for an IDM calculation: it avoids the need to monitor animal positions; it helps ensure measurable downwind concentration; and it increases the range of useable wind directions. Four different sensor configurations were used in the trials, differing in the number of concentration sensors (one or two) and sensor paths (two or four). Some configurations used sensor aiming motors to give multiple measurement paths and others used mirrors to create segmented paths (i.e., to go around a paddock corner). Cattle emissions measured with the IDM design showed good agreement across the 15 trials, consistent with high forage diets. When expressed in terms of CH4 yield (g/kg dry matter intake), the three feeding situations averaged 21.3 (summer grazing), 23.4 (winter grazing), and 23.9 (winter feeding). Based on the trial-to-trial consistency of the results, the similarity with other literature studies, and the success of a previous tracer-release study, we conclude that the narrow paddock IDM design provides a flexible and accurate method for calculating CH₄ emissions from grazing cattle.

Objective 3.1.4: Methane measurements from high (inefficient) vs. low (efficient) residual feed intake (RFI) heifers using open-path lasers (e.g., FTIR); manuscript in progress (Flesch et al. 2018 unpublished).

Methane emissions, daily dry matter intake (DMI), and methane yield (g CH_4 / kg DMI) from high and low RFI pregnant heifers and 3-yr old cows were measured in eight grazing trials (Tables 1 and 2). In each trial emissions were measured over five consecutive days using open-path concentration sensors (e.g., lasers, FTIR) and a micrometeorological technique as described by Flesch et al. (2017). Emissions from high and low RFI animals were measured concurrently using a robotic motor to aim sensors back and forth between high and low RFI paddocks, continuously throughout the day. Feed intake from the pregnant heifers was based on the alkane technique as described by Manafiazar et al. (2015), while feed intake of the cows was based on quadrat forage disappearance measurements. In all grazing trials (6 summer, 2 fall) a strong diurnal cycle in emissions was observed from the ensemble of 30-min measurement periods, with the highest emissions occurring during the late-morning through evening, and the lowest emissions during the early morning (Figure 1). The diurnal variability means that care is needed when estimating a daily average emission rate: a snapshot of daytime observations will overestimate the average, while the opposite would be true of a nighttime snapshot. The emission data over the multi-day trials were grouped into eight 3-h blocks covering the 24-h day (i.e., 0:00 - 3:00, 3:00 - 6:00, ...), and the average emission rate from each block was summed to give the daily average rate. In five of six trials, low RFI heifers emitted 4-13% less methane per day as compared with their high RFI pasture mates (Table 1), and in two of two trials low RFI cows emitted 6-9% (mean=7.5%) less methane per day than high RFI cows (Table 2). Low RFI heifers and cows consumed 7.0% and 5.2%, respectively, less forage DM/day as compared with their high RFI cohorts, having similar methane yields (g/kg DMI). High uncertainties of CH₄ emission for 2016 Kinsella heifers (Table 1) was due poor wind conditions and few valid measurements, while high uncertainties for 2016 Lacombe cows (Table 2) was due to extremely wet fall grazing conditions.

Figure 1. Daily CH₄ emission patterns for heifers from Kinsella and Lacombe grazed at the Lacombe Research and Development Centre. This is a composite of all three years of summer grazing data, combining the high and low RFI animals.

Table 1. Methane (CH₄) emission, feed intake and CH₄ yield from high and low RFI beef heifers grazing summer pasture at the Lacombe Research and Development Centre, 2015-2017.

		High RFI (inefficient)					Low RFI (efficient)			High to low RFI ratio		
Year and herd	Hours of obs.	n	CH ₄ emission ^z g/animal/d	Feed intake ^y kg DM/d	CH₄ yield ^y g/kg DMI	,	n	CH₄ emission ^z g/animal/d	Feed intake ^v kg DM/d	CH₄ yield ^y g/kg DMI	CH₄ emission	CH₄ yield
2015 Kinsella	34	5	250±12	12.7	19.7		5	221±12	10.8	20.5	1.13	0.96
2015 Lacombe	37	6	268± 8	11.2	23.9		6	247±10	9.6	25.7	1.09	0.93
2016 Kinsella	22	5	310±24	12.1	25.6		5	283±25	11.8	24.0	1.10	1.07
2016 Lacombe	49	5	265±10	11.5	23.0		5	268±9	11.2	23.9	0.99	0.96
2017 Kinsella	30	4	208±11	12.0	17.3		4	188±7	11.8	15.9	1.10	1.09
2017 Lacombe	24	3	300±24	9.7	30.9		3	288±18	9.2	31.3	1.04	0.99
Overall mean				11.5					10.7		1.08±0.05	1.00±0.07

^z Numbers are \pm standard error. ^y Feed intake was based on the alkane technique as described by Manafiazar et al. (2015).

Table 2. Methane (CH₄) emission, feed intake and CH₄ yield from high and low RFI 3-yr old beef cows grazing triticale swaths in the fall (October) at the Lacombe Research and Development Centre.

		High RFI (inefficient)			Low RFI (efficient)				High to low RFI ratio		
Year and herd	Hours of obs.	n	CH ₄ emission ^z g/animal/d	Feed intake ^y kg DM/d	CH₄ yield ^y g/kg DMI	n	CH₄ emission ^z g/animal/d	Feed intake ^v kg DM/d	CH₄ yield ^y g/kg DMI	CH₄ emission	CH₄ yield
2015 Lacombe	25	9	$\textbf{222} \pm \textbf{15}$	9.4	23.6	9	$\textbf{209} \pm \textbf{11}$	8.7	24.0	1.06	0.98
2016 Lacombe	18	6	$\textbf{275}\pm\textbf{40}$	13.5	20.4	6	253 ± 26	13.1	19.3	1.09	1.06
Overall				11.5				10.9		1.075	1.02

^z Numbers are \pm standard error. ^y Feed intake was based on quadrat disappearance measurements.

Objective 3.1.5: Methane measurements from low (efficient) and high (inefficient) residual feed intake (RFI) heifers using GreenFeed Emissions Monitoring (GEM) System.

Twenty-three (23) trials were conducted from 2015-2017 and included crossbred yearling heifers and cows from the Lacombe Research and Development Centre (LRDC), and Roy Berg Kinsella Research Station. Average daily CH_4 and CO_2 emissions for yearling heifers during winter feeding as recorded by the GEM system were 182.0 g CH_4 /day (SD=45.8, n=8725 animal days) and 5824 g CO_2 /day (SD=1558, n=8725 animal days). Similar values for pregnant heifers grazing summer pasture were 239.3 g CH_4 /day (SD=46.7, n=674 animal days) and 8103 g CO_2 /day (SD=1329, n=674 animal days), while mature cows in winter drylot emitted 229.2 g CH_4 /day (SD=68.1, n=5411 animal days) and 7925 g CO_2 /day (SD=1791, n=5411 animal days). Three-year old cows grazing triticale swaths in the fall emitted 200.9 g CH_4 /day (SD=54.1, n=529 animal days) and 6847 g CO_2 /day (SD=1555, n=529 animal days). Thus, considerable variability was observed in daily CH_4 and CO_2 emissions due to animal, diet quality, animal type, and feed efficiency group, thus suggesting potential for genetic and genomic selection for reduced CH_4 emissions.

Diurnal patterns for CH₄ and CO₂ in beef cattle

Daily CH₄ and CO₂ emissions were averaged across animals within drylot, summer grazing, and swath grazing trial by hour of day to generate diurnal patterns (Figures 2-5). Methane and CO₂ emissions for heifers fed a high forage diet in drylot begin to increase rapidly around 9 am, coinciding with feed delivery to the pen bunks at 0830 to 0900 hours (Figure 2). Peak emissions occurred between 1800-2200 hours due to second feed delivery around 1530-1630 hr. Peak CH₄ and CO₂ emissions for pregnant heifers grazing high quality grass pasture occurred around 0900-1000 hours and this was likely associated with initiation of daily grazing around sunrise which at LRDC in August occurred between 0556 to 0645 hours (Figure 3). Peak CH₄ and CO₂ emissions for cows fed triticale silage in drylot occurred between 1200 and 1700 hours which was primarily driven by feed delivery to the cows at 0830-0900 hours (Figure 4). Cows grazing swathed triticale in the fall exhibited peak emission around 1200-1400 hours, which was initiated by the beginning of daily grazing coinciding with sunrise which at LRDC in October occurs at 0737 to 0830hours (Figure 5). These diurnal patterns and their associated equations will be useful in further refinement to the procedure for calculating daily emissions from 3-5 min visit measurements. Presently visit measurements for 3-hour intervals within a day (0-0300, 0300-6000, ...) are averaged and then the interval are averaged to obtain daily emissions.

As expected, the CO_2 emissions were less variable than CH_4 emissions because the primary source of CO_2 is related to metabolic energy requirements that remain more stable compared with ruminal gas emissions that vary with feed intake, diet composition, and feeding strategy (Jentsch et al. 2009; Hegarty, 2013; Knapp et al. 2014). Our results of CH₄ emission pattern are comparable with previous studies. For example, Crompton et al. (2010) performed controlled experiments in open-circuit respiration chambers to continuously measure CH₄ emissions from lactating cows fed at different intervals. They reported variability that for once a day feeding, variability in diurnal pattern was 2.5; however, this decreased to 1.6 when animals were fed four times a day. In other studies, with ad libitum fed diets, CH₄ variability of diurnal pattern varied from 1.8 (Jonker et al. 2014) to 2.0 (Grainger et al. 2007). In a review of variability of diurnal CH₄ patterns using the GEM system, Zimmerman et al. (2013) reported values ranging from 1.2 to 1.6. More variable CH₄ diurnal patterns have been noted in chamber studies (up to 5.0), but diurnal patterns are associated with restricted feed intake or pelleted concentrate diets (Jonker et al. 2014) because CH₄ emission is affected by the amount and type of feed and time of feeding. Overall, CH_4 and CO_2 emission patterns from cattle vary depending on rate of methanogens which is a function of time and level of feeding, type of feed, and short-term sporadic emission of gas released from the rumen (Hegarty 2013).

Figure 2. Diurnal distribution of enteric methane and carbon dioxide emissions from replacement beef heifers fed a high forage diet in drylot as measured by the GEM system.

Diurnal patterns are represented by the following equations: CH₄: y=145.38±4.06 + 14.8390±1.5613x - 1.1208±0.1597x² + 0.0212±0.0046x³, R²= 0.924, RMSE=5.77, n=26753. CO₂: y = 5095±91 + 301.87±35.01x - 26.24±3.58 x² + 0.58±0.01x³, R²=0.893, RMSE=129.30, n=26753; x refers to hour of the day where 9=0 hours in the equation.

Diurnal patterns are represented by the following equations:

 CH_4 : y=249.89±5.76 - 1.3500±2.2162x + 0.4240±0.2267x²- 0.0222±0.0065x³, R²= 0.899, RMSE= 8.18, n=3504. CO₂: y=8276±150 + 66.98±30.12x - 6.47±1.26x², R²= 0.867, RMSE= 271.24, n=3504; x refers to hour of the day where 9 = 0 hours in the equation.

Figure 4. Diurnal distribution of enteric methane and carbon dioxide emissions from cows fed a forage diet in winter drylot as measured by the GEM system.

Diurnal patterns are represented by the following equations: CH_4 : y = 180.21±9.07 + 33.1970±3.4914x - 3.0748±0.3572x² + 0.0703±0.0102x³, R^2 =0.925, RMSE = 12.89, visit fluxes = 11913. CO_2 : y = 7641±126 + 458.56±48.38x - 40.99±4.95 x² + 0.89±0.14x³, R^2 =0.934, RMSE = 178.66, visit fluxes=11913; x refers to hour of the day where 9 = 0 hours in the equation.

Figure 5. Diurnal distribution of enteric methane and carbon dioxide emissions from cows grazing triticale swaths during the fall as measured by the GEM system.

Diurnal patterns are represented by the following equations:

 CH_4 : y = 196.58±12.86 + 10.4542±4.95x - 0.9373±0.5061x² + 0.0179±0.0145x³, R²=0.643, RMSE = 18.27, visit fluxes = 1365. CO₂: y = 6418±305 + 395.04±117.17x - 37.78±11.99 x² + 0.89±0.34x³, R²=0.602, RMSE = 432.69, visit fluxes=1365; x refers to hour of the day where 9 = 0 hours in the equation.

Methane and CO₂ emissions from beef cattle using the GEM system

Performance, feed intake, and CH_4 and CO_2 production as measured by the GEM system for yearling heifers during winter feeding (9 trials), cows during winter feeding (6 trials), and pregnant heifers during summer grazing (6 trials) are summarized in Table 3. Average feed efficiency of low and high RFI_{fat} cattle of different animal types differed by 0.76 to 1.24 kg DM/day (P<0.001) at equal levels of body weight, gain and backfat thickness. Age on test, mid-point body weight during test period (except drylot cows) and off-test backfat thickness were similar between low and high RFI_{fat} groups across all animal types. Efficient animals (low RFI_{fat}) consistently consumed less feed (8.9% for yearling heifers; 10.1% for cows; 5.1% for pregnant heifers on pasture) as compared with their inefficient (high RFI_{fat}) pen or pasture mates (P<0.001). This consistency is clearly illustrated in Figure 6, where the n-alkane tracer method was used to estimate individual animal grazed forage intake from Day 8-12 of a 12-day grazing trial.

Figure 6. Forage intake of high and low RFI_{fat} pregnant heifers grazing meadow brome grass over three summers at LRDC (summary of 6 trials and 60 heifers from LRDC and 60 from KIN).

Low RFI_{fat} yearling heifers and cows in winter drylot and pregnant heifers during summer grazing emitted 3.8%, 4.1% and 3.7% less CH₄ per day, respectively, than their high RFI_{fat} pen or pasture mates (Table 3). In addition, low RFI_{fat} yearling heifers and cows in winter drylot and pregnant heifers during summer grazing emitted 2.2%, 4.2% and 4.5% less CO₂ per day, respectively, as compared to high RFI_{fat} cattle. This reflects lower feed intake and possibly lower metabolic rate in low vs. high RFI_{fat} cattle in this study. A portion of the lower CH₄ emissions (g/day) in efficient cattle is offset by longer rumen retention time, improved digestibility (1-2 percentile points previously report in the literature), and more hydrogen ions available for methanogenesis. This is shown by the higher CH₄ and CO₂ yields (g/kg DMI) in low vs. high RFI_{fat} yearling heifers and cows in winter drylot, but not in pregnant heifers grazing summer pastures.

Trait	RFI _{fat} group	Drylot- yearling heifers	Drylot- Cows	Pasture Intake- Pregnant heifers
Number of trials	21	9	6	6
Number of animals	High	156	57	60
	Low	137	58	60
RFI _{fat} , kg DM/d	High	0.39±0.03	0.54±0.05	0.59±0.04
	Low	-0.37±0.03	-0.45±0.05	-0.65±0.04
	P level	<0.001	<0.001	<0.001
On-test age, mon	High	9.5±0.04	53.2±0.3	16.2±0.1
	Low	9.6±0.05	53.3±0.3	16.3±0.1
	P level	0.400	0.582	0.756
Test mid-point weight, kg	High	352.2±2.3	681.9±4.6	462.8±3.8
	Low	349.8±2.6	672.1±4.9	459.8±3.8
	P level	0.486	0.033	0.597
Off-test backfat, mm	High	6.0±0.1	10.05±0.3	7.6±0.2
	Low	5.6±0.2	10.1±0.3	7.5±0.2
	P level	0.073	0.088	0.807
Feed intake, kg DM/d	High	8.23±0.07	13.32±0.06	10.75±0.09
	Low	7.50±0.08	11.98±0.06	10.20±0.09
	P level	<0.001	<0.001	<0.001
CH₄ emission, g/d	High	185.3±0.8	245.8±1.5	248.7±3.0
	Low	178.2±1.9	235.8±1.4	239.4±2.8
	P level	<0.001	<0.001	0.045
CO ₂ emission, g/d	High	5722±19	8535±35	7950±84
	Low	5596±21	8173±34	7591±82
	P level	<0.001	<0.001	0.002
CH4 yield, g/kg DMI	High	22.9±0.2	19.2±0.2	23.3±0.4
	Low	24.2±0.2	20.7±0.2	23.8±0.3
	P level	<0.001	<0.001	0.355
CO2 yield, g/kg DMI	High	707±5	662±4.7	745±10
	Low	759±5	711±4.5	754±10
	P level	<0.001	<0.001	0.608

Table 3. Performance, feed intake and methane and carbon dioxide production of yearling heifers, cows, and pregnant heifers summarized over 21 trials.

Respiratory chamber (Alemu et al. 2017) and FTIR (Flesch et al. 2018 unpublished) results from some of these same cattle reported no difference in CH_4 yields between low vs. high RFI_{fat} yearling heifers in drylot or pregnant heifers during summer grazing.

Forage intake of 3-yr old cows during two swath grazing trials (20 cows per year) was not reported for several reasons: 1) field conditions during the fall of 2016 were very wet resulting in cattle tramping the swaths into the ground and muddy holes developing in front of the GEM system and, 2) the alkane profiles of swath triticale heads and stems were very different, thus negating the usefulness of the n-alkane methodology to estimate grazed forage intake. This in itself was a valuable result and will result in the publication of a paper on "Alkane profiles in fall grazed annuals".

In conclusion, low RFI_{fat} animals consume less feed at equal levels of body weight and production, emit less CH₄ and CO₂ (g/day), but may have variable CH₄ and CO₂ yields (g/kg DMI) depending on their physiological stage and diet (e.g., grazing high quality summer pasture, consuming barley silage during winter feeding). Thus genetic selection for low RFI_{fat} will result in cattle with lower feed intake at the same level of production, and reduced daily CH₄ and CO₂ emissions without comprising production traits, though methane and carbon dioxide yield per unit of feed may increase due to improved digestibility. Selection emphasis should be on production efficiency traits rather than CH₄ emissions per se as nutritional intervention, management and breeding strategies are shorter term and more effective in reducing the carbon footprint of beef production.

Objective 3.1.6: Quantification of the relationships between various daily measured biometrics and daily forage intake and methane emissions from pregnant heifers grazing summer pasture and cows grazing swathed annuals (triticale).

The objective of this study was to determine whether daily high frequency (HF) partial body weight, water intake, drinking behaviors and daily climatic variables could be used to predict individual animal daily feed intake and methane emissions of grazing cattle. Daily HF partial body weight, water intake and drinking behaviours (duration, headdown time and frequency) were measured using the GrowSafe Beef[®] System (<u>http://www.growsafe.com/</u>) and climatic data were obtained for LRDC and KIN from AAF's Current and Historical Alberta Weather Station Data Viewer

(http://www.agric.gov.ab.ca/acis/alberta-weather-data-viewer.jsp). Twenty pregnant beef heifers per year for three years from LRDC, 20 pregnant beef heifers per year for three years from KIN, and 20 and 12 cows per year from LRDC were used. Thus a total of six short duration (12 days) summer grazing trails with pregnant heifers were conducted at LRDC in 2015, 2016 and 2017, and two short duration fall grazing trails with 3-year old cows were conducted at LRDC in 2015 and 2016. Summer grazing trials are as described in detail by Manafiazar et al. (2015). Descriptive statistics by trial are given in Table 4 for manual scale whole body weight and HF partial body weight, and shows that a maximum of 456 possible manual scale weights are available for correlation to HF partial body weights.

tai	taken danna eight grazing trais conducted at Edeonibe Research and Development centre .												
Trial ^v	No. of cattle	Days on test	Possible no. of manual scale	Total no. of high frequency partial body weights		High freque we	ncy partia ight, kg	l body					
			weights ^x	Possible	Actual	Mean (SD)	min	max					
KIN-15-h	20	12	60 (3)	240	209	407.5 (23.4)	350.1	471.3					
LRDC-15-h	20	12	60 (3)	240	240	470.3 (27.7)	406.6	540.2					
KIN-16-h	20	12	60 (3)	240	198	433.6 (34.6)	364.0	541.2					
LRDC-16-h	20	12	60 (3)	240	217	488.4 (29.5)	420.2	568.6					
KIN-17-h	20	12	60 (3)	240	128	392.0 (26.0)	302.5	441.1					
LRDC-17-h	20	12	60 (3)	240	163	464.8 (35.6)	397.7	542.5					
LRDC-15-c	20	12	60 (3)	240	158	630.2 (52.9)	524.1	742.9					
LRDC-16-c	12	12	36 (3)	144	91	603.0 (33.8)	500.8	665.1					

Table 4. Descriptive statistics on number of manual scale whole body and high frequency partial body weightstaken during eight grazing trails conducted at Lacombe Research and Development Centre^z.

² A Morand chute with load bars and a Reliable Scale M75 scale head as used for manual scale weights, while high frequency partial body weights were taken with the GrowSafe Beef[®] system (GrowSafe Systems Ltd., Calgary, AB, Canada).

^v Trials are described by source of animal (LRDC, KIN), year (2015-2017) and animal type (h=heifer; c=cow).

^x Numbers in parenthesis refer to scale weights per animal.

Figure 7 illustrates a strong ($R^2 = 0.95$) linear relationship between whole body weight and HF partial body weight for pregnant heifers and 3-yr old cows, such that HF partial body weight accounted for 95% of the variation in manual scale body weight. High frequency partial body weight was consistently higher than manual body weight by 10-20 kg, and likely reflects lower gut fill associated with manual weighing due to the stress of moving cattle off pasture and through a processing facility. Since animals usually begin grazing at sunrise (August at LRDC, 0556-0646 hours), this results in more and variable gut fill loss when the animals are weighed sometimes around 0830-0930 hours. An advantage of HF partial body weight is that a weighing episode could occur 3-4 times per day in a non-stressed environment. A similar strong (R2 = 0.971) linear relationship was observed between whole body weight and HF partial body weight for yearling heifers and mature cows in drylot during their winter feed intake test. Thus, HF partial body weight, as measured by GrowSafe Beef[®], has great potential as a non-invasive, low stress, low labor method for measuring daily body weight under grazing condition and may also be an indirect indicator of other important traits in beef cattle (feed intake, methane emissions).

Figure 7. Relationship between body weight recorded by a manual scale vs. high frequency partial body weight recorded by the GrowSafe Beef[®] system during 8 grazing trials from 2015-2017 (6 pregnant heifer grazing trials; 2 cow swath grazing trials; Day 0, Day 8, Day 12 and end manual body weights). Y = $-10.23\pm6.01 + 1.0509\pm0.0120x$, n = 383, R² = 0.952, RMSE = 18.67.

Predicting of heifer grazed forage intake and CH₄ **emissions:** Phenotypic correlation coefficients (r_p) between daily measured biometrics from the GEM and GrowSafe Beef[®] systems and individual animal daily forage intake and CH₄ emissions are given in Table 5. These correlation coefficients are combined with daily mean climatic and forage quality variables. Noteworthy, are the relationships between grazed forage intake and CO₂ emission ($r_p = 0.23$), drinking event frequency ($r_p = -0.17$), and daily climatic variables ($r_p = 0.22-0.24$), and CH₄ emissions and daily HF partial body weight ($r_p = 0.41$) and several daily climatic variables. Multiple stepwise linear regression analysis revealed that four of 25 variables accounted for 45.9% of the variation in animal average daily grazed forage intake, and four of 25 variables accounted for 44.7% of the variation in animal average daily HF partial body weight, water intake, climatic observations and forage quality data may have use in predicting daily grazed forage intake and CH₄ emissions of individual animals. However, it must be cautioned that forage intake was

only measured for 5 days on 118 animals using the alkane tracer technique. Other variables such as dry matter yield and forage allocation (area grazed) may provide extra information for predicting grazed forage intake and CH₄ emissions.

methane emissions from pregnant heifers grazing summer pasture ^z .										
	Graz	zing feed	intake	C	H₄ emiss	ion				
Parameters		kg DM/	/d	g/d						
		r	Sign.	n	r	Sign.				
Heifer RFI _{fat} , kg DM/d	512	0.18	<0.001	3205	0.04	0.041				
GreenFeed Emissions Monitoring Sys	stem									
CH ₄ emission, g/d	512	0.11	0.010							
CO ₂ emission, g/d	512	0.23	<0.001	3205	0.44	<0.001				
CH_4/CO_2 ratio	512	0.10	0.029	3205	-0.60	<0.001				
CH4 yield, g/kg DM/d	512	-0.51	<0.001	512	0.78	<0.001				
CO ₂ yield, g/kg DM/d	512	-0.53	<0.001	512	0.32	< 0.001				
Visits, visits/d	512	0.05	0.271	3205	0.05	0.010				
Visit time, min/d	512	0.08	0.088	3205	0.07	<0.001				
GrowSafe Beef [®] System										
Daily HF weight, kg	468	0.10	0.033	3022	0.41	<0.001				
Water intake, L/d	402	0.03	0.510	2676	-0.01	0.677				
Drinking event duration, min/d	402	-0.10	0.037	2676	0.02	0.326				
Drinking event headdown, min/d	402	-0.02	0.636	2676	0.04	0.038				
Drinking event frequency, events/d	402	-0.17	<0.001	2676	-0.05	0.006				
Daily mean climatic variables										
Daily air temperature, °C	505	0.02	0.587	3197	-0.19	<0.001				
Daily air temperature max., °C	505	-0.07	0.114	3197	-0.14	<0.001				
Daily air temperature min., °C	505	0.24	<0.001	3197	-0.22	<0.001				
Daily humidity, %	505	0.22	<0.001	3197	-0.00	0.838				
Daily wind speed, km/hr	296	0.13	0.020	1719	0.21	< 0.001				
Daily precipitation, mm	505	0.23	<0.001	3197	-0.06	< 0.001				
Forage quality variables										
Dry matter, %	505	-0.17	<0.001	1458	0.07	0.005				
Crude protein (CP), %	505	0.16	<0.001	1458	-0.15	<0.001				
Acid detergent fiber (ADF), %	505	0.02	0.711	1458	0.14	< 0.001				
Neutral detergent fiber (NDF), %	505	0.03	0.505	1458	0.03	0.315				
Total digestible nutrients (TDN) ^y , %	505	-0.02	0.699	1458	-0.14	< 0.001				
Metabolizable energy ^x , MJ/kg DM	505	-0.02	0.695	1458	-0.14	< 0.001				

Table 5. Correlation coefficients between various biometrics measured daily using remote sensors supplemented with daily climatic and forage quality data, and daily forage intake and methane emissions from pregnant heifers grazing summer pasture^z.

^z Remote sensors used were GreenFeed Emission Monitoring GrowSafe Beef[®] systems

^y TDN, % = 96.03 – [1.034 x ADF, %].

^x ME, MJ kg⁻¹ DM = {(TDN,%/100) x 4.4 Mcal kg⁻¹ TDN} x 4.184 MJ DE Mcal⁻¹ x 0.82 MJ ME MJ⁻¹ DE (NRC 1996).

Table 6. Linear effects between variables measured daily using remote sensors combined with daily climatic observations and diet quality information, and daily forage intake and methane emissions from pregnant heifers grazing meadow brome grass^z.

Variables	Daily forage in DM/d	take, kg	Variables	CH₄ emission g/d		
	Effects±SE	Sign.		Effects±SE	Sign.	
HF partial weight, kg	0.010±0.003	0.001	HF weight, kg	0.477±0.107	<0.001	
Heifer RFI _{fat} , kg DM/d	0.388±0.121	0.002	Water intake, L/d	0.751±0.399	0.063	
Air temperature, °C	-0.359±0.194	0.068	Daily precipitation, mm	14.87±7.38	0.047	
Diet NDF, %	-0.245±0.141	0.085	Diet DM, %	-2.748±1.146	0.019	
Overall equation R ²	0.459	< 0.001	Overall equation R ²	0.447	< 0.001	

^z Remote sensors used were GreenFeed Emission Monitoring and GrowSafe Beef[®] systems. Data were adjusted for contemporary group or trial. Variables exited the regression analysis when P >0.10.

3.1.7. Quantify relationships of CH₄ and CO₂ emissions with feed intake, RFI and various biometrics in heifers and cows during winter drylot feeding.

Predicting of heifer and cow feed intake and CH₄ **emissions during winter drylot feeding:** Phenotypic correlation coefficients (r_p) between daily measured biometrics from the GEM and GrowSafe Beef[®] systems and individual animal daily feed intake and CH₄ emissions from heifers and cows during winter drylot feeding are given in Table 7. These correlation coefficients are combined with daily mean climatic observations and diet quality information. Noteworthy, are the moderate to high relationships between feed intake and CH₄ and CO₂ emission ($r_p = 0.51$ and 0.61), daily HF partial body weight ($r_p = 0.85$), and feeding event duration ($r_p = 0.42$). Methane emissions were most highly related to CO₂ emission, and daily HF partial body weight ($r_p = 0.69$). Multiple linear regression analysis revealed that three of 29 variables accounted for 88.5% of the variation in animal average daily feed intake, and three of 29 variables accounted for 82.3% of the variation in animal average daily CH₄ emissions (Table 8). **These results indicate that daily HF partial body weight combined with other observations (e.g., climatic) may be useful in predicting average animal daily feed intake and CH₄ emissions under drylot feeding conditions.**

Table 7. Correlation coefficients between various biometrics measured daily using remote sensors^z supplemented with climatic observations and diet quality information and daily feed intake and methane emissions from beef heifers and cows during winter dylot feeding (15 trials).

	F	eed inta	ke	<u>۔</u> ا۲	H₄ emissi	ion		
Parameters		kg DM/	d	g/d				
	n	r	Sign.	n	r	Sign.		
Heifer RFI _{fat} , kg DM/d	10542	0.11	< 0.001	12990	0.02	0.011		
GrowSafe Feed Intake Systems								
Feeding event duration, min/d	11022	0.42	< 0.001	11026	0.15	<0.001		
Feeding event headdown time, min/d	11022	0.28	< 0.001	11026	0.06	<0.001		
Feeding event frequency, events/d	11022	-0.00	0.826	11026	-0.07	<0.001		
GreenFeed Emissions Monitoring Syste	m							
CH₄ emission. g/d	11022	0.51	< 0.001					
CO_2 emission. g/d	11022	0.66	< 0.001	13618	0.73	<0.001		
CH_4/CO_2 ratio	11022	0.23	< 0.001	13618	-0.33	<0.001		
CH ₄ yield, g/kg DM/d	11022	-0.48	< 0.001	11022	0.29	<0.001		
CO_2 yield, g/kg DM/d	11022	-0.39	< 0.001	11022	0.16	<0.001		
Visits, visits/d	11022	-0.14	< 0.001	13609	-0.09	<0.001		
Visit time, min/d	11022	-0.16	< 0.001	13618	-0.09	<0.001		
GrowSafe Beef [®] system								
Daily HF weight, kg	2191	0.85	< 0.001	2250	0.69	<0.001		
Daily HF metabolic weight, kg	2191	0.85	< 0.001	2250	0.69	<0.001		
Water intake, L/d	na	na	na	na	na	na		
Drinking event duration, min/d	1798	-0.34	< 0.001	1856	-0.26	<0.001		
Drinking event headdown, min/d	1798	-0.31	< 0.001	1856	-0.24	<0.001		
Drinking event frequency, events/d	1798	-0.30	< 0.001	1856	-0.26	<0.001		
Daily mean climatic variables								
Daily air temperature, °C	11022	-0.15	< 0.001	12410	0.11	<0.001		
Daily air temperature max., °C	11022	-0.19	< 0.001	12410	0.09	<0.001		
Daily air temperature min., °C	11022	-0.13	< 0.001	12410	0.11	<0.001		
Daily humidity, %	11022	0.02	0.099	12410	-0.10	<0.001		
Daily wind speed, km/hr	10639	0.12	< 0.001	12023	0.05	<0.001		
Daily precipitation, mm	11022	0.01	0.129	12410	0.00	0.882		
Forage quality variables								
Dry matter, %	11022	-0.16	< 0.001	12588	0.09	<0.001		
Crude protein (CP), %	11022	-0.08	< 0.001	12588	-0.16	<0.001		
Acid detergent fiber (ADF), %	11022	0.03	< 0.001	12588	0.10	<0.001		
Neutral detergent fiber (NDF), %	11022	-0.07	< 0.001	12588	-0.01	0.412		
Total digestible nutrients (TDN) ^z , %	11022	-0.25	< 0.001	12588	-0.22	< 0.001		
Metabolizable energy ^y , MJ/kg DM	11022	-0.25	< 0.001	12588	-0.22	<0.001		

na The GrowSafe Beef[®] system in drylot was positioned in front of and tight to a Richie waterer and measured individual animal partial body weight, duration, headdown time and frequency of drinking episodes.

Table 8. Linear effects between variables measured daily using remote sensors combined with daily climatic observations and diet quality information, and daily feed intake and methane emissions from heifers and cows during winter drylot feeding^z.

Variables	Daily forage in DM/d	take, kg	Variables	CH₄ emission g/d		
	Effects±SE	Sign.		Effects±SE	Sign.	
HF body weight, kg	-0.036±0.026	<0.001	HF body weight, kg	-1.342±0.494	<0.001	
HF body weight ^{0.75} , kg	0.318±0.162	<0.001	HF body weight ^{0.75} , kg	9.533±3.240	<0.001	
Daily humidity, %	-0.031±0.015	<0.001	Feed intake, kg DM/d	7.455±2.831	<0.001	
Overall equation R ²	0.885	<0.001	Overall equation R ²	0.823	<0.001	

^z Remote sensors used were GreenFeed Emission Monitoring and GrowSafe Beef[®] systems. Data were adjusted for contemporary group or trial Variables exited the regression analysis when P >0.10.

Predicting of trial feed intake and CH₄ emissions:

Individual animal daily biometrics such as HF partial body weight, water intake, drinking and feeding behaviours, climatic observations and diet quality information may also be useful in predicting trail average feed intake and CH₄ emissions. This has practical use for grazing situations where measuring feed intake and CH₄ emissions are difficult, laborious and expensive. The relationship between trial average CO₂ emission and trial average daily feed intake in 20 trials is shown in Figure 8. Trial average CO₂ emission accounted for 70.2% of the variation in trial average DMI. This relationship is described by the following equation:

Trial DMI, kg DM/day = $1.87 \pm 1.29 + 0.0012 \pm 0.0002x$, R² = 0.702, RMSE = 1.23, n=20 trials.

Figure 8. Relationship between trial average feed intake and trial average carbon dioxide emissions in beef heifers and cows over 20 trials conducted at the Lacombe Research and Development Centre and the Roy Berg Kinsella Research Station.

Addition of HF partial body weight to the equation increased the amount of variation accounted for to 84.6%, where, Trial DMI, kg DM/day = $0.88\pm0.98 + 0.0008\pm0.0002$ (CO₂, g/day) + 0.0069 ± 0.0017 (HF body weight, kg), R² = 0.846, RMSE=0.92, n=20 trials.

Alternatively, HF partial body weight (partial $R^2 = 0.587$), diet ADF (partial $R^2 = 0.113$) and diet NDF (partial $R^2 = 0.137$) accounted for 83.7% of the variation in trial average daily feed intake.

Prediction of trial average CH₄ emissions also showed promise with trial average DMI accounting for 55.4% of the variation in trial average CH₄ emission (Figure 9). This relationship is described by the following equation: Trial CH₄, g/day = $82.06\pm29.43 + 13.50\pm2.86x$, R² = 0.554, RMSE = 27.37, n=20 trials.

Addition of HF partial body weight to the equation accounted for 83.3% of the variation in trial average CH₄ emission, where Trial CH₄, g/day = $14.21\pm39.37 + 12.81\pm4.60$ (DMI, kg DM/day) + 0.91 ± 0.57 (HF partial body weight, kg), R² = 0.833, RMSE=19.94, n = 20 trials.

Alternatively, HF partial body weight (partial $R^2 = 0.437$), average daily air temperature (partial $R^2 = 0.323$) and feeding event duration (partial $R^2 = 0.045$) accounted for 80.5% of the variation in trial average CH₄ emissions.

Figure 9. Relationship between trial average methane emission and trial average feed intake in beef heifers and cows in 20 trials conducted at the Lacombe Research and Development Centre and the Roy Berg Kinsella Research Station.

Thus predicting trial average DMI and CH₄ emissions using remote sensors such a GEM GrowSafe Beef[®] combined with climatic observations and diet quality information has practical application as the coefficients of determination (R²) were high (0.805 - 0.846).

4. Scientific Achievement.

- 4.1. Potential patents, licence agreements
 - Beef Cattle Methane emissions data base contains more than 23,000 daily enteric CH₄ and CO₂ emissions, with individual animal daily feed intake and feeding behaviours, HF partial body weight, water intake and drinking behaviours, climatic observations and diet quality information. All cattle (~700) in this data base have 50K or low density (GGP LD) genotypes which are being used to identify SNPs, indels (insertions and deletions) and functional genomic variants associated with CH₄ emissions and yield.

4.2. Published peer-reviewed papers, abstracts and proceedings

Manafiazar, G., Zimmerman, S, and. Basarab, J. A. 2017. Repeatability and variability of short-term spot measurement of CH_4 and CO_2 emissions from beef cattle using GreenFeed Emissions Monitoring System. Can. J. Animal. Sci. 97: 118–126 (2017) dx.doi.org/10.1139/cjas-2015-0190.

Alemu, A.W., Vyas, D., Manafiazar, G., Basarab, J.A., and Beauchemin, K.A. 2017. Enteric methane emissions from low- and high-residual feed intake beef heifers measured using GreenFeed and respiration chamber techniques. J. Anim. Sci., 95(8):3727-3737. doi: 10.2527/jas.2017.1501.

Flesch, T.K., Baron, V.S., Wilson, J.D., Griffith, D.W.T., Basarab, J.A., and Carlson, P.J. 2016. Agricultural gas emissions during the spring thaw: Applying a new measurement technique. Agricultural and Forestry Meteorology, 217 (Supp. 1): 111-121. <u>https://doi.org/10.1016/j.agrformet.2016.02.010</u>

Flesch, T., et al. 2017. Large Nitrous Oxide Emissions during Spring Thaw in Alberta. J. Envir. Quality, JEQ-2017-03-0129-TR, submitted.

Flesch, T.K., Basarab, J.A., Baron, V.S., Wilson, J.D., Hu, N., Tomkins, N.W., and Ohama, A.J. 2017. Methane emissions from cattle grazing under diverse conditions: An examination of field configurations appropriate for line-averaging sensors. Agricultural and Forestry Meteorology, Available online 14 October 2017, <u>https://doi.org/10.1016/j.agrformet.2017.10.012</u>

Flesch, T.K., Baron, V.S., Wilson, J.D., Basarab, J.A., Desjardins, R.L., Worth, D., and Lemke, R.L. 2018. Micrometeorological Measurements Reveal Large Nitrous Oxide Losses during Spring Thaw in Alberta. Atmosphere, accepted 27 March 2018.

Hu, N., Flesch, T.K., Wilson, J.D., Baron, V.S., Basarab, J.A. 2016. Refining an inverse dispersion method to quantify gas sources on rolling terrain. Agriculture and Forest Meteorology, 225: 1-7.

Meng, X. Extrusion of a beef heifer diet containing dotriacontane. 2017. Final Report. Food Science and Technology Centre, Food and Bio-Processing Division, Alberta Agriculture and Forestry, 301 Horticultural Station Road E, Brooks AB T1R 1E6.

4.3. Presentations, workshops, newsletters, articles, videos

Basarab, J.A., 2015-2017. Residual feed intake and greenhouse gas emissions in beef cattle, Animal Science 474, University of Alberta. Each year gave a presentation to ANSC 474 class.

Basarab, J.A. 2017. Keep Your Cow Herd Vigor Up, BeefTech, November 8-9, 2017, Edmonton, AB, Canada

Basarab, J.A. 2017 Genomic tools for commercial beef cattle, Tools to Build Your Cow Herd, Fall Workshop Series, 23-26 October 2017, Lethbridge, Olds, Pollackville and Vermillion.

Basarab, J.A. 2017. Genomic tools for commercial beef cattle. 8th Annual Livestock Gentec Conference, 17-18 October 2017, Edmonton AB.

Basarab, J.A., J. Crowley and D. Berry. 2017. Develop and deploy gEPDs and profit indices that perform well in commercial beef cattle. Alberta Beef, Forage and Grazing Centre Advisory Meeting, 22 August 2017, Lacombe, AB.

Basarab, J.A. 2017. Genomic tools for commercial beef cattle. COW-FORAGE GENTEC FIELD DAY, 22 August 2017, Lacombe, AB.

Mckeown, L. 2017. Demonstration of the Greenfeed Emissions Monitoring (GEM) system for remote measurement of methane and carbon dioxide from beef cattle. COW-FORAGE GENTEC FIELD DAY, 22 August 2017, Lacombe, AB.

Basarab, J.A. 2017. Genomic tools for commercial beef cattle. UCVM Beef Cattle Conference, 23 June 2017, Calgary, AB, Canada.

<u>C. Ekine-Dzivenu</u>, E. C. Akanno, L. Chen, L. McKeown, B. Irving, L. Baker, M. Vinsky, S. Miller, Z. Wang J. Crowley, M. Colazo, D. Ambrose, M. Juarez, H. Bruce, M. D. MacNeil, G. Plastow, J. Basarab, C. Li, C. Fitzsimmons. 2017. Performance evaluation for feed efficiency and growth in progeny of parents selected for low residual feed intake - The "Kinsella Breeding Project", results following two years of selection. Livestock Gentec Conference, 17-18 October, 2017, Edmonton, AB, Canada

C. Ekine-Dzivenu, E. C. Akanno, L. Chen, L. McKeown, B. Irving, L.Baker, M.Vinsky, S.Miller, Z. Wang J. Crowley, M. Colazo, D. Ambrose, M. Juarez, H. Bruce, M. D. MacNeil, G. Plastow, J. Basarab, C. Li and C. Fitzsimmons. 2017. Improvement of cow feed efficiency using molecular breeding values for residual feed intake - The "Kinsella Breeding Project". World Congress on Genetics Applied to Livestock Production (New Zealand, February 11-16, 2018).

Johnson, J.R., G. E. Carstens, S. D. Prince, K. H. Ominski, K. M. Wittenberg, M. Undi, T. D. A. Forbes, A. N. Hafla, D. R. Tolleson, and J. A. Basarab. 2017. Evaluation of fecal NIRS profiling technology to predict forage intake estimated using n-alkane markers in grazing cattle. ASAS-CSAS Annual Meeting, Baltimore, MD, July 8 to July 12, 2017.

ALMA 2016. Collaboration Provides Cattle Industry with Potential to Reduce Methane Emissions. ALMA, Newsletter, February 2016.

Beil, L. 2015. Getting creative to cut methane from cows: Less-burpy bovines means fewer greenhouse gases, Science News, Vol. 188, No. 11, November 28, 2015, p.22. Article and video. https://www.sciencenews.org/article/getting-creative-cut-methane-cows

McKeown, L. 2016. Greenfeed system for measuring methane emissions from cattle. Workshop at the Lethbridge Research Centre, 10 March 2016.

Zimmerman, S., Ghader Manafiazar, Nico Peiren and J.A. Basarab. 2016. ESTIMATES OF THE POTENTIAL OF GREENFEED ERRORS USING A MODELING APPROACH WITH VARIED VISITATION PATTERNS. 6th Greenhouse Gas and Animal Agriculture Conference, 14-18th February 2016, Melbourne, Australia, PO43, abstract and poster.

Manafiazar, G. 2016. Research progress report- RFI Methane project. Livestock Gentec lab meeting. March 4th. Edmonton, Canada. *Presentation.*

Manafiazar G., S. Zimmerman, and J. Basarab. 2016. Methane, CO₂, O₂ emissions variability and repeatability and feed intake comparisons in beef cattle. Workshop on Metabolic Gas Measurements for GreenFeed, 13-14th February 2016, Melbourne, Australia, *presentation*.

Hu, N., Flesch, T., Basarab, J.A., Baron, V., Wilson, J. 2016. EXPERIMENTAL DESIGN FOR MEASURING CATTLE EMISSIONS FROM TREATMENT AND CONTROL PADDOCKS USING OPEN-PATH CONCENTRATION

SENSORS. PO19, 6th Greenhouse Gas and Animal Agriculture Conference, 14-18th February 2016, Melbourne, Australia.

Manafiazar G., S. Zimmerman, and J. Basarab. 2016. Sampling frequency and measurement period for short-terms spot measurements of methane emissions from cattle using GreenFeed Emissions Monitoring System. 6th Greenhouse Gas and Animal Agriculture Conference, 14-18th February 2016, Melbourne, Australia, P044, abstract and poster

Hailemariam, D., G. Manafiazer, F. Miglior, J. Basarab, G. Plastow, C. Grelet, N. Petreny and Z. Wang. **2015.** Improving feed efficiency and reducing methane emissions from dairy cows using milk Midinfrared spectroscopy to support "green Alberta milk". Research progress report, Dairy Breeding and Genetics Committee meeting. http://cgil.uoguelph.ca/dcbgc/Dagnachew%20DCBGC%20-%20Progress%20report%20-%20Feed%20Efficiency%20UofA.pdf

Basarab, JA. 2015. Making beef cattle more feed efficient: Impact on performance, carcass and meat quality and methane emissions. II Symposium of Animal Science and Food Engineering, Pirassununga/SP/Brazil, 21-23 Oct 2015, *presentation*.

Basarab, J.A. 2015. Feed efficiency and Impact on performance, carcass and meat quality and methane emissions. II Intl. Symposium of Meat Science, Pirassununga/SP/Brazil, 21-23 Oct 2015.

Basarab, J.A., Manafiazar G. McKeown, **L. 2015.** Real-time demonstration of Greenfeed for producers, Livestock Gentec Field day. August 19th, Lacombe Research Center.

Basarab, J.A., Manafiazar G. McKeown, **L. 2015.** Real-time demonstration of GrowSafe Beef for producers, Livestock Gentec Field day. August 19th, Lacombe Research Center.

Basarab, J.A. and Flesch, TK, 2015. Real-time demonstration of FTIR methane measurement fro producers, Livestock Gentec Field day. August 19th, Lacombe Research Center.

Manafiazar, G., McKeown⁻, L., Baron, V., Plastow, G., Ominski, K., and Basarab, J. 2015. Methane and carbon dioxide emissions from high and low residual feed intake beef heifers, Gentec Conference, Edmonton, 13-14 October 2015.

Basarab, J.A. 2015. Residual feed intake and greenhouse gas emissions in beef cattle. Dr. Masahito Oba's international class, University of Alberta, Lacombe Research Centre, 21 August 2015.

Basarab, J.A. 2015. Selection for feed efficiency: Impact on climate change and methane production. Sustainable Agri-Food Production and Health – 21^{st} Century Solutions Edmonton, 14-16 Oct 2015.

Baron, V.S. and J.A. Basarab. 2015. Will RFI Studies Mean a Lower Carbon Footprint for Cattle Producers? https://www.youtube.com/watch?v=GeQcMjTRoko

Flesch, T. 2015. New Technology for Measuring Methane Emissions - What it Means for Cattle Producers. <u>https://www.youtube.com/watch?v=VUjO4yCjsFM</u>

Flesch, T. 2015. Cattle and Methane Emissions - Are we the problem, or the solution? <u>https://www.youtube.com/watch?v=xKji8i2OIcM</u>

Basarab, J.A. 2017. Sustainable beef production global challenge. January 23-24, 2017. University of Calgary's new College of Discovery, Creativity and Innovation, led by Dr Jay Cross, developed the course to bring creativity to Global Challenges such as feeding up to 9 billion people next 20-30 years.

Alberta Legislative Assembly; 23 November 2016, Members' Statement as <u>reported by Alberta Hansard</u>: Dr. David Bailey and Dr. John Basarab introduced at Alberta's Legistative Assembly by "The hon. Member for Leduc-Beaumont. Mr. S. Anderson. **Beef Cattle CH**₄ **emissions data base**: containing more than 21,000 animal-days of enteric methane and CO2 visit fluxes with individual animal feed intake, body weight, water intake and behaviour and climatic data.

Repeatability and variability of short-term spot measurement of methane and carbon dioxide emissions from beef cattle using GreenFeed Emissions Monitoring System. Poster. Roy Berg Kinsella Research Station Field Day, 20 July 2016

Demonstration on GreenFeed Emission Monitoring and GrowSafe systems for producers. Roy Berg Kinsella Research Station Field Day, 20 July 2016

Completed six interviews on "Research on Measuring Methane Emissions from Cattle":

i) Canadian Geographic, July 2016; ii) 840 CFCW, Alberta, July 2016; iii) 910 CFCW, Alberta, July 2016; iv) Bellmedia 610 CKTB, St. Catherines, Ontario, 30 August 2016; v) CBC radio, 25 August 2016; vi) CBC TV, 25 August 2016

Feed efficiency (RFI) traits from beef: What can we learn? Dairy section, Livestock Gentec Conference, 19 October 2016, Edmonton, AB, Canada.

gEPDs for commercial cattle: Project Update, Livestock Gentec Conference, 18 October 2016, Edmonton, AB, Canada. Methane data will be shared with this project.

Basarab, J.A. 2016. Methane in beef cattle. Interview with Mark Connolly, CBC Radio Edmonton am and David Gary, Calgary EyeOpener, May 25, 2016

Hailemariam, D., Manafiazar, G., Miglior, F., Basarab, J., Plastow, G and Wang, Z. 2016. Estimating CH₄ and CO₂ emission from lactating dairy cows using GreenFeed system. 2016 Joint Annual Meeting (ADSA, ASAS, WSASAS, CSAS), Salt Lake City, Utah, July 19-23, *abstract*.

Manafiazar, G. 2016. Repeatability and variability of short-term spot measurement of CH₄ and CO₂ from beef cattle using GEM system. Carbon Offsets and Livestock Methane Update. Edmonton, July 2016, *presentation*.

4.4. Students involved and level

<u>Brittany Byron</u>, MSc., Relationship between RFI classification and individual animal intake on pasture, using prediction equations, fecal NIRS and *n*-alkane techniques to measure intake. University of Manitoba. The RFI-Methane Project provided data to Brittany's project. Brittany also traveled from Winnipeg to Lacombe for two weeks each summer to assist with the summer grazing trials and is the student that completed our alkane analyses at the University of Manitoba.

<u>Nicky Lansink</u>, MSc., Performance and methane emissions of RFI-selected cattle in drylot and on range. University of Alberta, Defense completed October 20, 2017. The RFI-Methane project provided Nicky with the alkane pellets and procedures for determining feed intake on pasture. In addition 60 heifers from her project were tested at Lacombe Research and Development Centre for feed efficiency and methane emissions.

<u>Ghader Manafiazar</u>, PDF on project, University of Alberta. Dr. Manafiazar was directly involved with data analyses and write-up of project.

<u>Lisa McKeown</u>, Research Technician with John Basarab, <u>Alberta Agriculture and Forestry</u>. <u>Lisa was</u> responsible for calibration of GEM systems at LRDC and KIN and held workshops at the Lethbridge Research Centre and University of Alberta to teach other scientists and technicians.

<u>A.W. Alemu</u>, PDF for Karen Beauchemin, Lethbridge Research Centre. Dr. Alemu was responsible for carrying out the activity on "Enteric methane emissions from low- and high-residual feed intake beef heifers measured using GreenFeed and respiration chamber techniques".

<u>Amir Behrouzi</u>, Research assistant with Carolyn Fitzsimmons, University of Alberta. Amir was responsible for weekly reporting and quality control of Greenfeed Emissions monitoring System at the Roy Berg Kinsella Research Station.

4.5 Greenhouse Gas Impact.

Carbon footprint of a feed efficient beef herd (adapted from Beauchemin, Little and Basarab)

The results of the present study are consistent with a previous life cycle assessment (LCA) of selecting for low RFI cattle conducted by Beauchemin et al. (2013) and presented at the Greenhouse Gas and Animal Agriculture conference in Dublin. Briefly, a baseline LCA established the whole farm GHG emission intensity for beef production in western Canada (Beauchemin et al., 2010). A RFI scenario was then applied to the baseline scenario and its impact on GHG emissions was assessed. The beef production operation was comprised of 120 cows, 4 bulls, and their progeny. Progeny were fattened in a feedlot and marketed at 18 months of age. The farm also included cropland and native pasture for grazing to supply the feed requirements. The LCA was conducted over 8 years to account for lifetime GHG emissions from all animals. Beef was marketed from cull cows, cull bulls, and progeny reared for market. The fully selected RFI herd assumed 25 yr of selection. Annual rate of genetic progress was assumed to be 0.8% per year as per Alford et al. (2006). The proportion of feed intake of the RFI herd, relative to the unselected baseline herd, was 0.8207 for calves, replacement heifers, and backgrounding cattle, 0.8282 for finishing cattle, and 0.8544 for cows (0.8804 for pre-slaughter cows). GHG emissions were estimated using Holos, a whole-farm model based on the IPCC methodology, modified for Canadian conditions and farm scale. The model considers all significant CH₄, N₂O, and CO₂ emissions and removals (C sequestration in soils) on the farm, as well as emissions from manufacture of inputs (fertilizer, herbicides) and off-farm emissions of N₂O derived from nitrogen applied on the farm. Results are given as CO₂ equivalent, using the global warming potentials of the individual gases: CH₄, 25; N₂O, 298; and CO₂, 1. After full selection of a beef cattle herd for RFI, the estimated GHG intensity from beef production were 14.0% lower than for the nonselected baseline herd (19.8 vs. 23.1 kg CO2e/kg carcass beef). Due to the lower feed intake of the RFI herd, the farm area required for grazing and feed production was 13.2% lower than for the baseline herd.

5.0 Conclusions

This project has developed cutting edge FTIR methodology and rigorous scientific protocols for the GEM system to measure CH₄ and CO₂ in beef cattle under on-farm grazing and drylot conditions. The GEM and FTIR systems are less invasive, less expensive, less labor intensive and accurate methods for measuring CH₄ emission compared with respiratory chamber methodology. In addition, a world-class team has been assembled that has the expertise and techniques to quantify GHG footprints of beef cattle production systems, and to reduce carbon footprint of cattle production. Selection for low RFI as a GHG reduction strategy has been verified. Next steps will include using the large phenotype-genotype data base from this project to identify rumen and genomic biomarkers for low methane emitters and to develop a project on RFI and adapting to climate change for submission to the 2018 Large Scale Applied Research Program of Genome Canada. Large reduction (e.g., 30-50%) in the carbon intensity of beef production are possible by combining nutritional, management, grazing, and genomic interventions such as using feed additives (e.g., 3NOP, biochar), improving diet quality, using grasses and legumes with methane reducing attributes, breeding strategies to optimize hybrid vigor, genomic selection for low methane emitters, and improving general production efficiency.

6.0. Project Budget

Reporting period	Source	Туре	Personnel	Travel	Capital Assets	Supplies	CDL*	Other	Total
Period 1	A I N / A	Budgeted	\$30,000.00			\$15,000.00			\$45,000.00
Dates: 2014/03/01	ALIVIA	Spent	\$43,562.15			\$9,454.13			\$53,016.28
to 2015/05/31	Carda	Cash							\$0.00
	GOV t	In-kind	\$50,050.00						\$50,050.00
	Inductor	Cash							\$0.00
	industry	In-kind			\$36,633.00				\$36,633.00
Total Spent for Perio	d 1		\$93,612.15	\$0.00	\$36,633.00	\$9,454.13	\$0.00	\$0.00	\$139,699.28
Period 2	A N 4 A	Budgeted	\$148,003.00			\$56,666.00			\$204,669.00
Dates: 2015/06/01	ALIVIA	Spent	\$136,155.17			\$64,043.00			\$200,198.17
to 2016/03/31	Carda	Cash							\$0.00
	GOVI	In-kind	\$210,480.00					\$56,050.00	\$266,530.00
	المعارب مارين	Cash							\$0.00
	industry	In-kind			\$56,000.00				\$56,000.00
Total Spent for Perio	d 2		\$346,635.17	\$0.00	\$56,000.00	\$64,043.00	\$0.00	\$56,050.00	\$522,728.17
Period 3		Budgeted	\$233,999.00	\$13,000.00		\$56,666.00			\$303,665.00
Dates: 2016/04/01	ALIVIA	Spent	\$222,134.25	\$3,184.30		\$73,699.58			\$299,018.13
to 2017/03/31	C /	Cash							\$0.00
	GOVI	In-kind	\$210,480.00					\$56,050.00	\$266,530.00
	Industry	Cash							\$0.00
		In-kind			\$56,000.00				\$56,000.00
Total Spent for Perio	d 3	•	\$432,614.25	\$3,184.30	\$56,000.00	\$73,699.58	\$0.00	\$56,050.00	\$621,548.13
Period 4	A N 4 A	Budgeted	\$139,999.00			\$56,666.00			\$196,665.00
Dates: 2017/04/01	ALIVIA	Spent	\$101,205.75			\$76,406.12			\$177,611.87
to 2017/12/31	Carda	Cash							\$0.00
	GOV t	In-kind	\$210,480.00					\$56,050.00	\$266,530.00
	Industry	Cash							\$0.00
		In-kind			\$56,000.00				\$56,000.00
Total Spent for Perio	d 4		\$311,685.75	\$0.00	\$56,000.00	\$76,406.12	\$0.00	\$56,050.00	\$500,141.87
Period 5	AL N 4 A	Budgeted							\$0.00
Dates: yyyy/mm/dd	ALIVIA	Spent							\$0.00
to yyyy/mm/dd	Court	Cash							\$0.00
	GOVI	In-kind							\$0.00
	Inductor	Cash							\$0.00
	maustry	In-kind							\$0.00
Total Spent for Period 5		\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	
CUMULATIVE ALMA	CASH SPEN	IT	\$503,057.32	\$3,184.30	\$0.00	\$223,602.83	\$0.00	\$0.00	\$729,844.45
*Communication, Dissemination, and Linkage		9							

Period 2:

Budget Commentary

<u>ALMA Spent Personnel:</u> \$9908 (TF); \$7596 (GM); \$73,889 (LM); \$2762 UofA administrative staff; **\$42,000 AAFC salary and benefits** = \$136,155 (to March 23, 2016)

<u>ALMA Spent Supplies:</u> \$45,000 Univ. of Manitoba, alkane analysis; \$1575 pellets AF; \$15,000 AAFC pasture development costs; 2468 other = \$64,043.

The \$42,000 in salary and benefits listed in the first sentence is categorized as ALMA personnel, but due to University of Alberta's accounting system it appears under Supplies and Other-BL in their Financial Overview statement. Actual ALMA Personnel=\$136,155 (variance=8.0%) and Supplies=\$61,565 (variance=8.6%). **Period 2 variance = 3.4%.**

Period 3:

<u>ALMA Spent Personnel:</u> \$9098.78 (GM); \$16691.39 (tehnicans); \$26188.48 (TF); \$8155.60 DGAC UofA administrative staff; \$45000 University of Manitoba; **\$117000 AAFC salary and benefits** = \$222134.25 (to March 17, 2017).

<u>Travel:</u> \$3184.30.

<u>ALMA Spent Supplies:</u> \$5699.58 pellets Brooks Food Processing Centre for pellets; \$68,000 to AAFC Lethbridge for respiratory chamber user fees = \$73699.58.

The \$45,000 and \$117000 in salary and benefits listed in the second sentence is categorized as ALMA personnel, but due to University of Alberta's accounting system it appears under Supplies and Other-BL in their Financial Overview statement. **Period 3 budget variance = 1.5%.**

Period 4:

<u>ALMA Spent Personnel</u>: \$28292.00 (GM); \$13578.57 (technicans RM); \$39643.48 (TF); \$11471.85 (TDSV); \$1019.90 (MER); \$7199.96 DGAC UofA administrative staff = \$101205.76.

<u>ALMA Spent Supplies</u>: \$4370.94 pellets Brooks Food Processing Centre for pellets; \$991.09 trucking; \$925 insurnace; \$79.09 other; \$40.00 software; \$45000 University of Manitoba; \$25000 AAFC = \$76406.12

Period 4 budget variance = 9.7%. Surplus is due to lower costs of salary and benefits.

Overall budget variance = 3.0%.

Surplus is due to lower costs of salary and benefits as post-doctorate fellows were often shared between projects and thus projects were charged accordingly.

7.0. Funding contributions

	Estimated tota	resources allocated	l to the	project
--	----------------	---------------------	----------	---------

Sources	Amount	Percentage of total project cost
Alberta Agriculture and Forestry	\$750,000	28.2%
Other government sources: Cash	\$0	0.0%
Other government sources: In-kind	\$849,640	32.0%
Industry: Cash	\$851,354	32.1%
Industry: In-kind	\$204,633	7.7%
Total project cost	\$2,655,627	100%

External sources of funding for the project. Clearly indicate any changes to confirmed sources of funding as well as any new sources of funding. (Additional rows may be added if necessary).

Government sources							
Name (no abbreviations unless stated in Section 3)	Amount cash	Amount in-kind					

Industry sources							
Name (no abbreviations unless stated in Section 3)	Amount cash	Amount in-kind					
Climate Change and Emission Management	\$851,354						
Cooperation (CCEMC)							
GrowSafe System Ltd. (Calgary, AB, Canada)		\$204,633					

15. Principal Investigator's Signature and Authorised Representative's Approval

The Principal Investigator and an authorised representative from the Principal Investigator's organisation of employment MUST sign this form.

By signing as an authorised representative of the Principal Investigator's employing organisation, the undersigned hereby acknowledges submission of the information contained in this interim report to the funder(s).

Principal Investigator					
Name:	Title/Organisation:				
John Basarab	Senior Reserach Scientist, Alberta Agriculture				
	and Forestry & Adjunct Professor,				
	Agricultural, Food and Nutritional Sciences,				
	University of Alberta				
Signature:	Date:				
John Basarah	March 22, 2018				
0					
Principal Investigator's Authorised Represen	tative's Approval				
Name:	Title/Organisation:				
Ruurd Zijlstra	AFNS				
	University of Alberta				
Signature:	Date:				
	March 22, 2018				

Principal Investi	gator	and the second
Name:		Title/Organisation:
John Basarab		Senior Reserach Scientist, Alberta Agriculture
		and Forestry & Adjunct Professor,
		Agricultural, Food and Nutritional Sciences,
		University of Alberta
Signature:		Date:
	John Bacarab	March 22, 2018
	0	
Principal Investi	gator's Authorised Represe	ntative's Approval
Name:		Title/Organisation:
Ruurd Zijlstra		AFNS
-		University of Alberta
Signature:	T mt	Date:
	Derwed totics	March 22, 2018

Appendix A. CCEMC Budget and Project Financing Schedule, March 2014 to 31 December 2017

Milestone	Task	Start Date	End Date	Expense Category	ALMA Actuals	CCEMC	CCEMC	CCEMC
1 0 Voor 1	1 1 VEAD 1	May 1 2014	Sont 20	Sumpling	Actuals	Funds	Actual	variance
LU Year 1 Import two Greenfeed Systems from USA, install & valid. Install and valid GSB system. Prepare monoculture pasture at <u>one</u> location.	Develop monoculture pastures and pasture infrastructure at Lacombe.	Мау 1, 2014	Sept 30, 2014	(planting, fencing, water, power, site preparations)	\$15,000 transferred to AAFC- Lacombe on July 3, 2015	\$15000	CCEMC \$12851	\$2149
	1.2a YEAR 1. Develop RFP,	May 1, 2014	Dec 1, 2014	Capital – Greenfeed		151967	\$154469	\$-2502
	import and install two GreenFeed TM	Apr 1, 2014	Dec 1, 2014	Travel		\$5000	\$3434	\$1566
	systems. Attend workshop on measuring CH4 & CO2 using the Greenfeed System; install GrowSafe Beef systems at Lacombe	Sept, 2014 April 1, 2014	Oct, 2014 Dec 1, 2014	Workshop (2 people): measure CH4 & CO2 using Greenfeed, Rapid City, SD, USA Services - GSB systems at Lacombe - Installation & delivery -site prep & broad cost Salaries/Benefits Tech/PDF 42k/yr; DGAC	\$43562 \$9454	\$10000 \$30000 \$20000	\$8970	\$1030 \$0
	1.2b YEAR 1. Purchase C32	April 1, 2014	Dec 1, 2014	Import C32 (\$1600/kg) from France		\$2500	\$2500	\$0
	YEAR 1 Overhead	April 1, 2014	May 31, 2015	20% to UofA	0	\$46893	\$46445	\$448
	YEAR 1 Total	April 1, 2014	May 31, 2015		\$53016	\$281360	\$278669	\$2691

CCEMC Budget and Project Financing Schedule as of 31 May 2015

1. Overall the CCEMC budget variance is 0.96%.

		0						
Milestone	Task	Start Date	End Date	Expense Category	ALMA	CCEMC	CCEMC	CCEMC
					Funds	Funds	actual	variance
Year 2	1.3 YEAR 2.	June 1, 2015	Mar 31, 2016	Supplies;				
Measure ~220	Purchase			Sampling-feed, forage,		\$1,500	\$1,500	
growing heifers	sampling			fecal, blood		\$1.850	\$1.850	\$0
and 80 cows	supplies and			beesway barley &		\$1,000	\$1,000	ΨŬ
under drulet	food ingradiants			wheat flour cancle meet				
	feed ingredients			and all DDCa				
conditions for	for alkane			and oil, DDGs	+		-	-
RFI. Measure	labeled feed	June 1, 2015	Mar 31, 2016	Services: -alkane pellets	\$37,000			
heifers for	pellet. Make			(\$5k/site/yr)	<mark>\$10k</mark>			
biometrics &	alkane pellets			Alkane analysis	AAFC			
CH4 emissions				(\$27/samples * 3000)	\$27k to			
under drylot				_	UoiM			
(n=80) and	1.4 YEAR 2.	June 1, 2015	Dec 31,2015	Services				
grazing (n=60)	Measure ~220	Monitor one		 GSB user fee or 		\$34,000	\$34,000	
conditions	heifers (2	pen (42-45		purchase cost				
Measure 40	locations) for	hd)/location		- feed cubes		\$15,000	\$2894 trk	
actual for CIIA	RFI	using the				+,	\$9332	\$2774
COWS IOF CH4	ICI I.	Greenfeed and					¢7552	φ2771
emissions under		CS					geno	
drylot and		05						
grazing	15 VEAD 2	June 1, 2015	Dec 1 2015	Salawing/Domofita	\$77.002			
conditions.	1.5 I EAK 2.	Julie 1, 2015	Dec 1, 2015	Salaries/ beliefts	\$77,005			
	Setup FTIK and			(Partial TKF salary/	9005 III 7 551 cm			
	measure $CH_{4,}$			PDF/grad stud. 3.5 yr.)	7,551 gm			
	etc.				$\frac{10239}{(\$47K)}$ to			
					$\Delta \Delta FC$			
		June 1 2015	Dec 1 2015	Supplies FTIR	^{nuu} c)			
		June 1, 2015	Dec 1, 2015	Banair calibration		\$22.217	\$10192	\$4.071
				Repair, canoration,		\$25,517	\$10165	\$4,071
				purchase			reflectors	
		-				+	\$9,063	+ + + + + + + + + + + + + + + + + + + +
		June 1, 2015	Dec 1, 2015	Travel	+ - -	\$14,000	\$12,095	\$ 1,905
	1.6 YEAR 2.	June 1, 2015	Mar 31, 2016	Salaries/Benefits	\$65,000			
	Summer			Tech or PDF 42k/yr &	A 65000 1			
	grazing:			Ph.D 23k/yr;	\$65000 Im			
	Conduct feed	July 1, 2015	Oct 31, 2015	Services:				
	intake on			Travel-				
	pasture trial at					\$5,000	\$5,000	\$0
	Lacombe; 30							
	heifers per yr.							
	2.1 YEAR 2.	Sept 1, 2015	Mar 31, 2016	Services				
	Install							
	GreenFeed TM			- GSB user fee or		\$17,000	\$16,000	
	GrowSafe Beef			purchase cost		+,	+,	
	and OR ETIR			Installation & daliyom				
	and OF_FTIK			- Instantation & derivery		\$7,000	\$5707	¢0.010
	systems m			-site preparation		\$7,000	\$3181	\$2,215
	drylot pens and							
	swath locations							
	2.2 YEAR 2	Nov 1, 2015	Mar 31,2016	Services	\$1,666			
	Measure 40			Alkanes-C32	\$18,000			
	cows for RFI in			Alkane analysis	<mark>\$1,576</mark>			
	two locations			(\$27/sample)	\$18,000 to			
				<u>, '</u>	UofM			
	2.3 YEAR 2	June 1, 2015	Mar 31, 2016	Salaries/Benefits				
	Conduct trial in	,	, ,	(partial TKF salary/	Covered	\$23,665	\$18211 tf	\$ -784
	each of three			PDF/grad stud 3.5 yr.)	under 1.5		\$6238 eo	
	years	June 1 2015	Mar 31 2016	DGAC	\$6,000			
		June 1, 2015	1/1ai 01, 2010	20110	\$5,500			
	Year 2 overhead	June 1 2015	Mar 31 2016	20% to UofA	\$0,000	\$28.466	\$26.342	\$2.124
	- cut 2 over neud	ounc 1, 2015	1/101 01, 2010	-070 to COIA		\$20, 1 00	φ20,3 1 2	Ψ2,124
	YEAR 2 Total	June 1. 2015	Mar 31, 2016		\$204.669	\$170.798	\$158.495	\$12,303
		, _ , _ , _ , _ , _ , _ , _ , _ , _ , _	,,,		\$200,989	,	,	, ,

ALMA Funds column: Highlighted are actual expenditures; not highlighted are projected expenditures. Year 2 ALMA variance=1.8%. Year 2 CCEMC variance=7.2%.

CCEMC Budget and Project	t Financing Schedule for	1 April 2016 to 31 March 2017
---------------------------------	--------------------------	-------------------------------

Milestone	Tool	Start Data	End Data	Europea Cotogory		CCEMC	CCEMC	Total
Milestone	1 ask	Start Date	End Date	Expense Category	Funds	Funds	actual	Total
Year 3 Measure an additional ~220 growing heifers and 80 cows under drylot conditions for RFI. Measure heifers for biometrics & CH4 emissions under drylot (n=80) and grazing (n=60) conditions. Measure 40 cows for CH4 emissions under drylot and grazing	1.3 YEAR 3. Purchase sampling supplies and feed ingredients for alkane	April 1, 2016	June 30, 2016	Supplies; Sampling-feed, forage, fecal, blood beeswax, barley & wheat flour, canola meal and oil, DDGs		\$1,500 \$1,850	\$3,350	\$3,350
	labeled feed pellet. Make alkane pellets	April 1, 2016	June 30, 2016	Services: -alkane pellets (\$5k/site/yr) Alkane analysis (\$27/samples * 3000)	\$10,000 \$27,000 <mark>27k UofM</mark> 5713 goa			\$37,000
	1.4 YEAR 3. Measure ~220 heifers (2 locations) for RFI.	Jan 2016 Monitor 1 pen (~40hd per location)using the Greenfeed & GS	May 2016	Services - (4) GSB user fee at \$8,500/unit/yr. - Feed cubes for cows		\$34,000 \$15,000	\$34,000 \$15,000	\$49,000
	1.5 YEAR 3. Setup FTIR and measure $CH_{4,}$ etc. at two	April 1, 2016	Dec 1, 2016	Salaries/Benefits (Partial TKF salary/ PDF/grad stud. 3.5 yr.)	\$17,999 <mark>2000 gm</mark> <mark>16691 tec <mark>10k aafc</mark></mark>	\$68,000	24,227 tf 43,773 lm	\$85,999
conditions.	locations	April 1, 2016	Dec 1, 2016	Supplies FTIR Repair, calibration		\$23,316	25,369	\$23,316
		April 1, 2016	Dec 1, 2016	Travel-FTIR		\$13,000	\$13,000	\$13,000
Measure CH ₄ emissions from 10 high and 10 low RFI beef	1.6 YEAR 3. Summer grazing: Conduct feed intake on	April 1, 2016	Mar 31, 2017	Salaries/Benefits Tech or PDF42k/yr & Ph.D 23k/yr;	\$42,000 \$23,000 7000gm 25483 tf 32k aafc			\$65,000
heifers using GreenFeed compared to respiration	pasture trial Lacombe/Kins; 30 heifers per year/location.	July 1, 2016	Oct 31, 2016	Services: Travel-Lac/Kinsella	\$13,000 <mark>3,184</mark>	\$5,000	\$5,176	\$18,000
chambers	2.1 YEAR 3. Install GreenFeed TM , GrowSafe Beef and OP_FTIR systems in drylot pens and swath at two locations	Sept 1, 2016	Mar 31, 2017	Services - (4) GSB user fee at \$8,500/unit/yr. - Installation & delivery -site preparation		\$17,000 \$7,000	\$16,000 \$4,126 \$1,216	\$24,000
	2.2 YEAR 3 Measure 40 cows for RFI in two locations	Nov 1, 2016	Feb 28,2017	Services Alkanes-C32 Alkane analysis (\$27/sample)	\$1,666 \$18,000 <mark>18kUofM</mark>			\$19,666
	2.3 YEAR 3 Conduct trial in each of three yrs	April 1, 2016	Mar 31, 2017	Salaries/Benefits (partial TKF salary/ PDF/grad stud. 3.5 yr.)	Covered under 1.5	\$14,665	14582	\$14,665
	3.1 Calibrate systems and	April 1, 2016	May 31,2016	Services Equip Fee (\$500/hd)	\$68,000 <mark>\$68k aafc</mark>			\$68,000
	measurements	April 1, 2016	June 30, 2016	Salaries/Ben-Tech 0.6 FTE	\$75,000 <mark>75kaafc</mark>			\$75,000
		April 1, 2016	Mar 31, 2017	DGAC	\$8,000 <mark>\$8156</mark>			\$8,000
	Year 3 Overhead	April 1, 2016	Mar 31, 2017	20% to UofA		\$40,066	\$40,051	\$40,066
	YEAR 3 Total	April 1, 2016	Mar 31, 2017		\$303,665 \$298,227	\$240,397	\$239,870	\$544,062 <mark>\$538,097</mark>

ALMA Funds column: Highlighted values in "ALMA Funds" refers to actual ALMA expenditures. Year 3 ALMA variance=1.8%.

Year 3 CCEMC variance=0.2%. Year 3 Total variance=1.1%.

Milestone	Task	Start Date	End Date	Expense Category	ALMA	CCEMC	Total
1. Incotonic	1 upin	Start Dute	Lina Dutt	Expense cutegory	Funds	Funds	1000
YEAR 4		April 1, 2017	June 30, 2017	Services: -alkane pellets	\$10.000	T unus	\$37.000
Measure an	1.4 YEAR 4.	F ,		(\$5k/site/yr)	\$27,000		<i>+••</i> ,•••
additional ~220	Measure ~220			Alkane analysis	\$27k UofM		<mark>\$33406</mark>
growing heifers and 80 cows	heifers (2 locations) for RFI.			(\$27/samples * 3000)	<mark>\$6366 +40</mark>		
		Jan 2017	May 2017	Services			
under drylot		Monitor one		- (4) GSB user fee at		\$34,000	\$49,000
DEL Massura		pen (42-45 hd)/		\$8,500/unit/yr.		\$15,000	
heifers for		the Greenfeed		-reed cubes		\$ <u>34,000</u>	\$44 125
biometrics &		and GS				\$10.125	φττ,125
CH4 emissions under drylot (n=80) and grazing (n=60) conditions. Measure 40 cows for CH4 emissions under drylot and grazing conditions							
	1.5 YEAR 4.	April 1, 2017	Dec 1, 2017	Salaries/Benefits	\$85,999		
	Setup FTIR and			(Partial TKF salary/	<mark>\$39643 tkf</mark>		\$85,999
	measure CH4, etc.			PDF/grad stud. 3.5 yr.)	\$11472 tv		
	at Lacombe				\$25000 ac		<mark>\$77,135</mark>
		April 1 2017	Dec 1 2017	Supplies FTIR	\$1020 mer	\$23.317	\$23.317
	1.6 YEAR 4.	April 1, 2017	Dec 1, 2017	Repair, calibration.		\$23,317	φ23,317
	Summer grazing:			purchase		<mark>\$2,753</mark>	\$2,753
	Conduct feed			-			
	intake on pasture	April 1, 2017	Dec 1, 2017	Travel-FTIR		\$13,000	\$13,000
	trial Lacombe/Kins; 20 heifers per year/location.					\$3,408	#5.000
		Annil 1 2017	Dec 21 2017	Soloniog/Donofita	\$25,000	<mark>\$1,821</mark>	\$5,229
		April 1, 2017	Dec 51, 2017	Tech or PDE 42k/vr &	\$23,000		\$48,000
				Ph.D 23k/yr:	\$13579 rm		φ + 0,000
					<mark>28292 gm</mark>		<mark>\$41,871</mark>
		July 1, 2017	Oct 31, 2017	Services:		\$5,000	\$5,000
	2.1 YEAR 4.					* 1 102	* 4 4 6 *
	Install Crean Food TM	G 1. 2017	D. 1 2017	Travel-Lac/Kinsella		<mark>\$4,193</mark>	<mark>\$4,193</mark>
	GrowSafe Beef	Sept 1, 2017	Dec 1, 2017	Services		\$17,000	\$24,000
	and OP FTIR			- (4) GSB user fee at		\$7,000	\$24,000
	systems in drylot			\$8,500/unit/yr.		<i>\$1</i> ,000	
	pens at LRC.			- Installation & delivery		<mark>\$17,000</mark>	<mark>\$18,318</mark>
				-site preparation		<mark>\$1,318</mark>	
	2.2 YEAR 4	Nov 1,2017	Dec 31, 2017	Services	\$1,667		
	Measure 40 cows			Alkanes-C32	\$18,000		\$19,667
	for RFI in two			Alkane analysis	\$18k HofM		\$18,000
	locations			(\$27/sample)			φ 10,000
	2.3 YEAR 4	April 1, 2017	Dec 31, 2017	Salaries/Benefits		\$14,666	\$14,666
	Conduct trial in	• /	,	(partial TKF salary/	Covered		. ,
	each of three years			PDF/grad stud. 3.5 yr.)	under 1.5	<mark>\$14666 tf</mark>	<mark>\$14,666</mark>
		April 1, 2017	Dec 31, 2017	DGAC	\$6,000		\$6,000
	Voor 1 Overhaad	April 1 2017	Dec 21 2017		<u>\$7200</u>	\$26 166	\$7200 \$26.466
	rear 4 Overnead	April 1, 2017	Dec 51, 2017			\$20,400 \$17857	¢∠0,400 \$17857
	YEAR 4 Total	April 1, 2017	Dec 31, 2017		\$196.666	\$158,799	\$355.465
					\$177,612	\$107,141	\$284,753
	Year 1-4	April 1, 2014	Dec 31, 2017		\$750,000	\$851,354	\$1,601,354
					<mark>\$729,844</mark>	<mark>\$784,175</mark>	<mark>\$1,514,019</mark>

CCEMC Budget and Project Financing Schedule for 1 April 2017 to 31 December 2017

ALMA Funds column: Highlighted values in "ALMA Funds" refers to actual ALMA expenditures. Total project variance=5.5%. Unspent funds were due to lower costs of repair and maintenance costs (e.g., FTIR laser), salary and benefits (sharing of PDFs between projects), and feed (no cubes purchased in Year 4 as triticale silage was used and paid for by AAFC).