

Investing to keep businesses competitive

An Overview of Motor and Drive Measures

Agenda

- Program Overview
- Measure Categories
- Review of eligible technologies, rules, and application forms for:
 - Variable Frequency Drives
 - High Efficiency Motors
 - Notched and Synchronous Belts
- Allocating Costs
- Q&A Period

Presenters

Portia Baladad Moderator ESB Marketing Manager (Enerva & Summerhill Team)

Allison Mostowich

Presenter

ESB Outreach and Engagement Manager (ERA)

Patrick McMahon Presenter ESB Support Manager, (Enerva & Summerhill Team)

Sooria Narsiah Presenter ESB Lead Technical Support (Enerva & Summerhill Team)

Investing to keep businesses competitive

About ERA

MANDATE

Reduce GHG emissions and grow Alberta's economy by accelerating the development and adoption of innovative technology solutions.

VISION

Alberta has competitive industries that deliver sustainable environmental outcomes, attract investment, and are building a diversified, lower carbon economy.

Measure Categories

Investing to keep businesses competitive

Eligible Motor & Drive Measures Types

Variable Frequency Drives (VFDs)

High Efficiency Motors

Notched or Sync Belts

Variable Frequency Drives (VFD)

- Same process outcome, less energy use
- Exponential energy savings associated with moving volumes
- Many applications from ventilation to mining

$$Q \propto N \text{ or } \frac{Q1}{Q2} = \frac{N1}{N2}$$
$$H \propto N^2 \text{ or } \frac{H1}{H2} = \frac{N1^2}{N2^2}$$
$$P \propto N^3 \text{ or } \frac{P1}{P2} = \frac{N1^3}{N2^3}$$

VFDs – Specific Rules

 Can only be installed to control pump or fan motors between 1-100 hp
 Can only be installed in retrofit situations, not new construction

Incentive is based on the size of the motor (\$125/hp)

□ Specification sheet for VFD must be provided

Variable Frequency Drives Application

STEP 1

Select the type of control on the motor prior to installing the VFD.

	Motors and Drives 🗸 🗸
•	leasure Type
	VFD 🗸
~	leasure
	Select a Measure 🗸
	VFD for Fan - ON/OFF CONTROL : Motor size 1 -100 HP
	VFD for Fan - INLET DAMPER CONTROL : Motor size 1 -100 HP
	VFD for Fan - DISCHARGE DAMPER CONTROL : Motor size 1 -100 HP
	VFD for Pump - Throttle Valve : Motor size 1 -100 HP
	VED for Pump - Recirculation : Motor size 1 -100 HP

Variable Frequency Drives Application

STEP 2

Provide the required information.

NOTE: Quantity refers to the number of VFDs, not the HP.

Quantity	Rated Full Load CFM of Fan
Enter here	Type here
Fan Type	Fan Nameplate
Select from list 🗸 🗸	Select from computer (or) Drag and Drop
Drive Type	.PNG, .PDF, .Doox, .xlsx
Select from list 🗸 🗸	Fan Manufacturer
Centrifugal Blade Type	Type here
Select from list 🗸 🗸	Fan Model
Axial Blade Type	Type here
Select from list	Motor HP (i)
	Enter here
Existing Flow Control for Fan	Estimated Annual Operating Hours ()
Type here	Enter here

puter (or) Drag and Drop load. Acceptable file types: .JPEG,

Variable Frequency Drives Application Per Unit Emissions Reduction STEP 3

The emissions reduction estimates are automatically calculated. Review all costs to ensure they have been accurately recorded.

Note: Installation costs should be included in the labour costs. All other costs should be included in the design costs.

Total Emissions Reduction - VFD for Fan/Pump Motor	
Equipment & Material Costs (i)	
Enter here	
Labour Cost (i)	
Enter here	
Design Cost (i)	
Enter here	
Total Cost	

Variable Frequency Drives Application

STEP 4

Review the calculated values.

The **Measure Incentive** is the incentive based on the measures list. The **Maximum Eligible Measure Incentive** is the calculated incentive cap relative to the total eligible project cost. The **Total Eligible Measure Incentive** is the lower of the two above values.

\$125.00	
Measure Incentive Motor (i)	- VFD for Fan/Pump

Jaiculated value

Incentive Per Unit

Maximum Eligible Measure Incentive - VFD for Fan/Pump Motor (i)

Calculated value

Total Eligible Measure Incentive - VFD for Fan/Pump Motor (i)

Calculated value

High Efficiency Motors

- Better engineering, more efficiency motors
- A few percentage points, with lots of load, and high utilization can save a lot of energy.

Requirements for High Efficiency Motors

- Incentive is based on the size of the motor
- Specification sheet for motor must be provided
- □ Must be installed in retrofit situations new construction is not eligible
- Motor must meet minimum NEMA premium efficiency guidelines
- Size ranges between 1-500 hp
- □ Can cover Open Drip Proof and Total Enclosed Fan Cooled types

STEP 1

Select the type of motor (ODP or TEFC) and the size in HP.

ļ		
	Motors and Drives	-
N	Measure Type	
	Premium Efficient Motors - ODP	-
M	Measure	
	Premium Efficient Motors - 1 HP	-
	Premium Efficient Motors - 1 HP	
	Premium Efficient Motors - 1.5 HP	
	Premium Efficient Motors - 2 HP	
	Premium Efficient Motors - 3 HP	
	Premium Efficient Motors - 5 HP	
	Premium Efficient Motors - 7.5 HP	
	Premium Efficient Motors - 10 HP	
	Premium Efficient Motors - 15 HP	

Measure Category

High Efficiency Motors Application

STEP 2

Provide the required information.

zuantity	
Enter here	Is the Existing Motor Single or Dual Speed?
Litter here	Single Speed Dual Speed
stimated Annual Operating Hours ()	Was Motor Previously Rewound?
Enter here	Yes No
visting Motor Nameplate Picture	Driven Equipment Details
Select from computer (or) Drag and Drop	Select from list
.PNG, .PDF, .Docx, .xlsx	New Motor Efficiency
xisting Motor HP	Enter here
Enter here	Speed of New Motor
xisting Motor Efficiency	Select from list 🗸 🗸
Enter here	Specification Sheet of New Motor
xisting Motor Age	Select from computer (or) Drag and Drop

High Efficiency Motors Application

STEP 3

The emissions reduction estimates are automatically calculated. Review all costs to ensure they have been accurately recorded.

NOTE: Installation costs should be included in the labour costs. All other costs should be included in the design costs.

0.258723 Total Emissions Reduction Calculated value Equipment & Material Costs i Enter here Labour Cost i Enter here Design Cost i	
Total Emissions Reduction Calculated value Equipment & Material Costs (i) Enter here Labour Cost (i) Enter here Design Cost (i)	
Calculated value Equipment & Material Costs i Enter here Labour Cost i Enter here Design Cost i	
Equipment & Material Costs (i) Enter here Labour Cost (i) Enter here Design Cost (i)	
Enter here Labour Cost i Enter here Design Cost i	
Labour Cost (i) Enter here Design Cost (i)	
Enter here Design Cost (i)	
Design Cost (i)	
Enter here	

Per Unit Emissions Reduction

High Efficiency Motors Application

STEP 4

Review the incentive calculations.

The **Measure Incentive** is the incentive based on the measures list. The Maximum Eligible Measure Incentive is the calculated incentive cap relative to the total eligible project cost. The Total Eligible **Measure Incentive** is the lower of the two above values.

Incentive Per Unit
\$15.00
Measure Incentive (i)
Maximum Eligible Measure Incentive (i)
Total Eligible Measure Incentive (i)

Notched or Synchronous Belts

- More grip, less slip
- Friction = heat, heat = waste
- Process belts reduce maintenance obligations, improve efficiency and are cost effective

Requirements for Notched or Synchronous Belts

Two categories for incentives:
 \$20 per belt under 6 feet
 \$40 per belt 6 feet and longer

□ The pulley system must be replaced if using a synchronous belt

STEP 1

Select the measure and the length.

Measure Category	
Motors and Drives	~]
Measure Type	
Notched or Synchronous Belt Retrofits	~]
Measure	
Notched or Synchronous Belt Retrofits - Shorte	~
Notched or Synchronous Belt Retrofits - Shorter Lengths (Under 6 feet)	
Notched or Synchronous Belt Retrofits - Medium and Longer Lengths (6 feet and up)	

Notched or Synchronous Belts Application

STEP 2

Provide the required information.

Driven Equipment Details	Quantity
Select from list 🗸 🗸	Enter here
Approximate Length of Belt (Feet)	Estimated Annual Operating Hours (i)
Enter here	Enter here
	Existing Motor Nameplate Picture
New Belt Specification Sheet	Select from computer (or) Drag and Drop
Select from computer (or) Drag and Drop	documents to upload. Acceptable file types: .JPEG, .PNG, .PDF, .Docx, .xlsx
.PNG, .PDF, .Docx, .xlsx	Evisting Motor HD
	Entermere
	Existing Motor Efficiency
	Enter here
	Existing Motor Age

Notched or Synchronous Belts Application

STEP 3

The emissions reduction estimates are automatically calculated. Review all costs to ensure they have been accurately recorded.

NOTE: Installation costs should be included in the labour costs. All other costs should be included in the design costs.

0.258723
Total Emissions Reduction
Equipment & Material Costs (i)
Enter here
Labour Cost (i)
Enter here
Design Cost (i)
Enter here
Total Cost

Per Unit Emissions Reduction

Notched or Synchronous Belts Application

STEP 4

Review the calculated values.

The Measure Incentive is the incentive based on the measures list. The Maximum Eligible Measure Incentive is the calculated incentive cap relative to the total eligible project cost. The Total Eligible Measure Incentive is the lower of the two above values.

Incentive Per Unit
\$15.00
Measure Incentive (i)
Maximum Eligible Measure Incentive ()
Total Eligible Measure Incentive ()

Allocating Eligible Expenses for Incentive Calculations

- The Maximum Eligible Measure Incentive is 50% of the project costs.
- If a project requires splitting costs between measures, please provide an estimate (see next slides).

Incentive Per Unit	
\$15.00	
Measure Incentive (i)	
Maximum Eligible Measure Incentive ()	
Total Eligible Measure Incentive (i	

Example for Allocation of Project Costs

A building is installing VFDs for two of their HVAC fans, one which is on a 25 HP motor and one which is on a 15 HP motor.

The project has the following costs:

- Equipment Cost for 25 HP VFD \$6,000
 - Potential incentive: 25hp x \$125/hp = \$3,125
- Equipment Cost for 15 HP VFD \$3,500
 - Potential incentive: 15hp x \$125/hp = \$1,875
- Labour Cost for Installing Both VFDs \$1,000
- Design Cost for Sizing Both VFDs \$500

Example for Allocation of Project Costs

The labour and design costs must be split between the two measures using an estimated allocation.

Here, the costs between the two VFD measures are evenly split.

	25 HP VFD	15 HP VFD
Equipment & Material Costs	\$6,000	\$3,500
Labour Cost	\$500 (50%)	\$500 (50%)
Design Cost	\$250 (50%)	\$250 (50%)
Total Measure Cost	\$6,750	\$4,250
Eligible Measure Incentive	\$3,125	\$1,875

Per Unit Emissions Reduction
6.27
Total Emissions Reduction - VFD for Fan/Pump Motor
Equipment & Material Costs (i)
Enter here
Labour Cost (i)
Enter here
Design Cost (i)
Enter here
Total Cost

Project Cost Allocation in the Application

If allocating project costs between measures, please provide a document with the allocation descriptions in step 5 of the Pre-Project Application.

Support Team

Website: eralberta.ca/esb Email: support@esbprogram.ca Phone: 1-844-407-0025 By chat on the ERA website and program portal

Thank you. See you next time.

